Johnson, K. A. & Whitford, W. G. Foraging ecology and relative importance of subterranean termites in chihuahuan desert ecosystems. Environ. Entomol. 4, 66–70 (1975).
Phillips, H. R. P. et al. Global distribution of earthworm diversity. Science 366, 480–485 (2019).
Potapov, A. M. et al. Globally invariant metabolism but density-diversity mismatch in springtails. Nat. Commun. 14, 674 (2023).
van den Hoogen, J. et al. Soil nematode abundance and functional group composition at a global scale. Nature 572, 194–198 (2019).
Rosenberg, Y. et al. The global biomass and number of terrestrial arthropods. Sci. Adv. 9, 1–13 (2023).
Joly, F.-X. et al. Detritivore conversion of litter into faeces accelerates organic matter turnover. Commun. Biol. 3, 660 (2020).
Jouquet, P., Mamou, L., Lepage, M. & Velde, B. Effect of termites on clay minerals in tropical soils: fungus-growing termites as weathering agents. Eur. J. Soil Sci. 53, 521–528 (2002).
Kane, J. L., Kotcon, J. B., Freedman, Z. B. & Morrissey, E. M. Fungivorous nematodes drive microbial diversity and carbon cycling in soil. Ecology 104, e3844 (2023).
Van Groenigen, J. W. et al. How fertile are earthworm casts? A meta-analysis. Geoderma 338, 525–535 (2018).
Wilkinson, M. T., Richards, P. J. & Humphreys, G. S. Breaking ground: pedological, geological, and ecological implications of soil bioturbation. Earth-Sci. Rev. 97, 257–272 (2009).
Briones, M. J. I. Soil fauna and soil functions: a jigsaw puzzle. Front. Environ. Sci. 2, 7 (2014).
Grandy, A. S., Wieder, W. R., Wickings, K. & Kyker-Snowman, E. Beyond microbes: Are fauna the next frontier in soil biogeochemical models? Soil Biol. Biochem. 102, 40–44 (2016).
Osler, G. H. R. & Sommerkorn, M. Toward a complete soil C and N cycle: incorporating the soil fauna. Ecology 88, 1611–1621 (2007).
Filser, J. et al. Soil fauna: Key to new carbon models. Soil 2, 565–582 (2016).
Vidal, A. et al. Chapter One – The role of earthworms in agronomy: Consensus, novel insights and remaining challenges. in (ed. Sparks, D. L.) vol. 181 1–78 (Academic Press, 2023).
Frouz, J. Plant-soil feedback across spatiotemporal scales from immediate effects to legacy. Soil Biol. Biochem. 189, 109289 (2024).
Pulleman, M. M., Six, J., Uyl, A., Marinissen, J. C. Y. & Jongmans, A. G. Earthworms and management affect organic matter incorporation and microaggregate formation in agricultural soils. Appl. Soil Ecol. 29, 1–15 (2005).
Bossuyt, H., Six, J. & Hendrix, P. F. Protection of soil carbon by microaggregates within earthworm casts. Soil Biol. Biochem. 37, 251–258 (2005).
Angst, G. et al. Earthworms act as biochemical reactors to convert labile plant compounds into stabilized soil microbial necromass. Commun. Biol. 2, 441 (2019).
Vidal, A. et al. Earthworm cast formation and development: a shift from plant litter to mineral associated organic matter. Front. Environ. Sci. 7, 1–15 (2019).
Le Mer, G. et al. Inferring the impact of earthworms on the stability of organo-mineral associations, by Rock-Eval thermal analysis and 13C NMR spectroscopy. Org. Geochem. 144, 104016 (2020).
Kellerová, A., Angst, G. & Jílková, V. Earthworms facilitate stabilization of both more-available maize biomass and more-recalcitrant maize biochar on mineral particles in an agricultural soil. Soil Biol. Biochem. 189, 109278 (2024).
Castellano, M. J., Mueller, K. E., Olk, D. C., Sawyer, J. E. & Six, J. Integrating plant litter quality, soil organic matter stabilization, and the carbon saturation concept. Glob. Chang. Biol. 21, 3200–3209 (2015).
Cotrufo, M. F., Wallenstein, M. D., Boot, C. M., Denef, K. & Paul, E. The Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: Do labile plant inputs form stable soil organic matter? Glob. Chang. Biol. 19, 988–995 (2013).
Sokol, N. W. et al. Life and death in the soil microbiome: how ecological processes influence biogeochemistry. Nat. Rev. Microbiol. 20, 415–430 (2022).
Kallenbach, C. M., Grandy, A. S., Frey, S. D. & Diefendorf, A. F. Microbial physiology and necromass regulate agricultural soil carbon accumulation. Soil Biol. Biochem. 91, 279–290 (2015).
Lehmann, J. et al. Persistence of soil organic carbon caused by functional complexity. Nat. Geosci. 13, 529–534 (2020).
Kleber, M. et al. Dynamic interactions at the mineral – organic matter interface. Nat. Rev. Earth Environ. 2, 402–421 (2021).
Cotrufo, M. F. & Lavallee, J. M. Chapter One – Soil organic matter formation, persistence, and functioning: A synthesis of current understanding to inform its conservation and regeneration. in (ed. Sparks, D. L.) vol. 172 1–66 (Academic Press, 2022).
Sokol, N. W., Sanderman, J. & Bradford, M. A. Pathways of mineral-associated soil organic matter formation: Integrating the role of plant carbon source, chemistry, and point of entry. Glob. Chang. Biol. 25, 12–24 (2019).
Cole, L., Bardgett, R. D., Ineson, P. & Hobbs, P. J. Enchytraeid worm (Oligochaeta) influences on microbial community structure, nutrient dynamics and plant growth in blanket peat subjected to warming. Soil Biol. Biochem. 34, 83–92 (2002).
Heděnec, P. et al. Global distribution of soil fauna functional groups and their estimated litter consumption across biomes. Sci. Rep. 12, 17362 (2022).
Jiang, X., Denef, K., Stewart, C. E. & Cotrufo, M. F. Controls and dynamics of biochar decomposition and soil microbial abundance, composition, and carbon use efficiency during long-term biochar-amended soil incubations. Biol. Fertil. Soils 52, 1–14 (2016).
Bol, R., Poirier, N., Balesdent, J. & Gleixner, G. Molecular turnover time of soil organic matter in particle-size fractions of an arable soil. Rapid Commun. Mass Spectrom. 23, 2551–2558 (2009).
Mueller, C. W. & Koegel-Knabner, I. Soil organic carbon stocks, distribution, and composition affected by historic land use changes on adjacent sites. Biol. Fertil. Soils 45, 347–359 (2009).
von Lützow, M. et al. Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions – a review. Eur. J. Soil Sci. 57, 426–445 (2006).
Angst, G. et al. Unlocking complex soil systems as carbon sinks: multi-pool management as the key. Nat. Commun. 14, 2967 (2023).
Lugato, E., Lavallee, J. M., Haddix, M. L., Panagos, P. & Francesca Cotrufo, M. Different climate sensitivity of particulate and mineral-associated soil organic matter. Nat. Geo 14, 295–300 (2021).
Crowther, T. W. et al. The global soil community and its influence on biogeochemistry. Science 365, eaav0550 (2019).
Potapov, A. M. et al. Feeding habits and multifunctional classification of soil-associated consumers from protists to vertebrates. Biol. Rev. 97, 1057–1117 (2022).
Bonkowski, M. Protozoa and plant growth: the microbial loop in soil revisited. N. Phytol. 162, 617–631 (2004).
Scheu, S. Effects of earthworms on plant growth: patterns and perspectives: The 7th international symposium on earthworm ecology · Cardiff · Wales · 2002. Pedobiologia (Jena.) 47, 846–856 (2003).
Brown, G. G., Edwards, C. A. & Brussaard, L. How Earthworms Affect Plant Growth: Burrowing into the Mechanisms. in Earthworm Ecology (ed. Edwards, C. A.) 13–49 (CRC Press, 2004). https://doi.org/10.1201/9781420039719.
Angst, Š. et al. Stabilization of soil organic matter by earthworms is connected with physical protection rather than with chemical changes of organic matter. Geoderma 289, 29–35 (2017).
Bossuyt, H., Six, J. & Hendrix, P. F. Rapid incorporation of carbon from fresh residues into newly formed stable microaggregates within earthworm casts. Eur. J. Soil Sci. 55, 393–399 (2004).
Fahey, T. J. et al. Earthworm effects on the incorporation of litter C and N into soil organic matter in a sugar maple forest. Ecol. Appl. 23, 1185–1201 (2013).
Guggenberger, G., Thomas, R. J. & Zech, W. Soil organic matter within earthworm casts of an anecic-endogeic tropical pasture community. Colomb. Appl. Soil Ecol. 3, 263–274 (1996).
Sánchez-de León, Y. et al. Endogeic earthworm densities increase in response to higher fine-root production in a forest exposed to elevated CO2. Soil Biol. Biochem. 122, 31–38 (2018).
Wachendorf, C., Potthoff, M., Ludwig, B. & Joergensen, R. G. Effects of addition of maize litter and earthworms on C mineralization and aggregate formation in single and mixed soils differing in soil organic carbon and clay content. Pedobiologia (Jena.). 57, 161–169 (2014).
Angst, G., Mueller, K. E., Kögel-Knabner, I., Freeman, K. H. & Mueller, C. W. Aggregation controls the stability of lignin and lipids in clay-sized particulate and mineral associated organic matter. Biogeochemistry 132, 307–324 (2017).
Hong, H. N. et al. How do earthworms influence organic matter quantity and quality in tropical soils? Soil Biol. Biochem. 43, 223–230 (2011).
Ma, Y. et al. The combined controls of land use legacy and earthworm activity on soil organic matter chemistry and particle association during afforestation. Org. Geochem. 58, 56–68 (2013).
Vidal, A., Quenea, K., Alexis, M. & Derenne, S. Molecular fate of root and shoot litter on incorporation and decomposition in earthworm casts. Org. Geochem. 101, 1–10 (2016).
Zhang, X., Wang, J., Xie, H., Wang, J. & Zech, W. Comparison of organic compounds in the particle-size fractions of earthworm casts and surrounding soil in humid Laos. Appl. Soil Ecol. 23, 147–153 (2003).
Angst, G., Angst, Š., Frouz, J., Peterse, F. & Nierop, K. G. J. Preferential degradation of leaf- vs. root-derived organic carbon in earthworm-affected soil. Geoderma 372, 114391 (2020).
Hoeffner, K., Monard, C., Santonja, M. & Cluzeau, D. Feeding behaviour of epi-anecic earthworm species and their impacts on soil microbial communities. Soil Biol. Biochem. 125, 1–9 (2018).
McLean, M. A., Migge-Kleian, S. & Parkinson, D. Earthworm invasions of ecosystems devoid of earthworms: Effects on soil microbes. Biol. Invasions Belowgr. Earthworms as Invasive Species 57–73 https://doi.org/10.1007/978-1-4020-5429-7_7 (2006).
Singh, J., Eisenhauer, N., Schädler, M. & Cesarz, S. Earthworm gut passage reinforces land-use effects on soil microbial communities across climate treatments. Appl. Soil Ecol. 164, 103919 (2021).
Bernard, L. et al. Endogeic earthworms shape bacterial functional communities and affect organic matter mineralization in a tropical soil. ISME J. 6, 213–222 (2012).
Chang, C. H., Szlavecz, K. & Buyer, J. S. Species-specific effects of earthworms on microbial communities and the fate of litter-derived carbon. Soil Biol. Biochem. 100, 129–139 (2016).
Jouquet, P., Maron, P. A., Nowak, V. & Tran Duc, T. Utilization of microbial abundance and diversity as indicators of the origin of soil aggregates produced by earthworms. Soil Biol. Biochem. 57, 950–952 (2013).
Scullion, J. & Malik, A. Earthworm activity affecting organic matter, aggregation and microbial activity in soils restored after opencast mining for coal. Soil Biol. Biochem. 32, 119–126 (2000).
Angst, G. et al. Earthworms as catalysts in the formation and stabilization of soil microbial necromass. Glob. Chang. Biol. 28, 4775–4782 (2022).
Barthod, J., Dignac, M. F. & Rumpel, C. Effect of decomposition products produced in the presence or absence of epigeic earthworms and minerals on soil carbon stabilization. Soil Biol. Biochem. 160, 108308 (2021).
Bohlen, P. J., Edwards, C. A., Zhang, Q., Parmelee, R. W. & Allen, M. Indirect effects of earthworms on microbial assimilation of labile carbon. Appl. Soil Ecol. 20, 255–261 (2002).
Barthod, J. et al. How do earthworms affect organic matter decomposition in the presence of clay-sized minerals? Soil Biol. Biochem. 143, 107730 (2020).
Lubbers, I. M. et al. Greenhouse-gas emissions from soils increased by earthworms. Nat. Clim. Chang. 3, 187–194 (2013).
Marhan, S., Auber, J. & Poll, C. Additive effects of earthworms, nitrogen-rich litter and elevated soil temperature on N2O emission and nitrate leaching from an arable soil. Appl. Soil Ecol. 86, 55–61 (2015).
Marhan, S., Langel, R., Kandeler, E. & Scheu, S. Use of stable isotopes (13C) for studying the mobilisation of old soil organic carbon by endogeic earthworms (Lumbricidae). Eur. J. Soil Biol. 43, S201–S208 (2007).
Lubbers, I. M., Pulleman, M. M. & Van Groenigen, J. W. Can earthworms simultaneously enhance decomposition and stabilization of plant residue carbon? Soil Biol. Biochem. 105, 12–24 (2017).
Capowiez, Y., Marchán, D., Decaëns, T., Hedde, M. & Bottinelli, N. Let earthworms be functional – Definition of new functional groups based on their bioturbation behavior. Soil Biol. Biochem. 188, 109209 (2024).
Bottinelli, N., Hedde, M., Jouquet, P. & Capowiez, Y. An explicit definition of earthworm ecological categories – Marcel Bouché’s triangle revisited. Geoderma 372, 114361 (2020).
Ambarish, C. N. & Sridhar, K. R. Chemical and microbial characterization of feed and faeces of two giant pill-millipedes from forests in the Western Ghats of India. Pedosphere 26, 861–871 (2016).
Ambarish, C. N. & Sridhar, K. R. Production and quality of pill-millipede manure: a microcosm study. Agric. Res. 2, 258–264 (2013).
Coulis, M., Hättenschwiler, S., Coq, S. & David, J.-F. Leaf litter consumption by macroarthropods and burial of their faeces enhance decomposition in a mediterranean ecosystem. Ecosystems 19, 1104–1115 (2016).
da Silva, V. M. et al. Influence of the tropical millipede, Glyphiulus granulatus (Gervais, 1847), on aggregation, enzymatic activity, and phosphorus fractions in the soil. Geoderma 289, 135–141 (2017).
Joly, F.-X., Coq, S., Coulis, M., Nahmani, J. & Hättenschwiler, S. Litter conversion into detritivore faeces reshuffles the quality control over C and N dynamics during decomposition. Funct. Ecol. 32, 2605–2614 (2018).
Ganault, P. et al. Leaf litter morphological traits, invertebrate body mass and phylogenetic affiliation explain the feeding and feces properties of saprophagous macroarthropods. Eur. J. Soil Biol. 109, 103383 (2022).
Coulis, M., Hättenschwiler, S., Rapior, S. & Coq, S. The fate of condensed tannins during litter consumption by soil animals. Soil Biol. Biochem. 41, 2573–2578 (2009).
Joly, F.-X., Coq, S. & Subke, J.-A. Soil fauna precipitate the convergence of organic matter quality during decomposition. Oikos 2023, e09497 (2023).
Špaldoňová, A. & Frouz, J. Decomposition of forest litter and feces of armadillidium vulgare (isopoda: oniscidea) produced from the same litter affected by temperature and litter quality. Forests 10, 939 (2019).
Wickings, K. & Grandy, A. S. The oribatid mite Scheloribates moestus (Acari: Oribatida) alters litter chemistry and nutrient cycling during decomposition. Soil Biol. Biochem. 43, 351–358 (2011).
Frouz, J. et al. Utilization of dietary protein in the litter-dwelling larva of bibio marci (Diptera: Bibionidae). Eurasia. Soil Sci. 52, 1583–1587 (2019).
Frouz, J. & Šimek, M. Short term and long term effects of bibionid (Diptera: Bibionidae) larvae feeding on microbial respiration and alder litter decomposition. Eur. J. Soil Biol. 45, 192–197 (2009).
Jia, Y. et al. Insight into the indirect function of isopods in litter decomposition in mixed subtropical forests in China. Appl. Soil Ecol. 86, 174–181 (2015).
Kaneda, S., Frouz, J., Baldrian, P., Cajthaml, T. & Krištůfek, V. Does the addition of leaf litter affect soil respiration in the same way as addition of macrofauna excrements (of Bibio marci Diptera larvae) produced from the same litter? Appl. Soil Ecol. 72, 7–13 (2013).
Špaldoňová, A. & Frouz, J. The role of Armadillidium vulgare (Isopoda: Oniscidea) in litter decomposition and soil organic matter stabilization. Appl. Soil Ecol. 83, 186–192 (2014).
Frouz, J., Špaldoňová, A., Lhotáková, Z. & Cajthaml, T. Major mechanisms contributing to the macrofauna-mediated slow down of litter decomposition. Soil Biol. Biochem. 91, 23–31 (2015).
Buse, T., Ruess, L. & Filser, J. Collembola gut passage shapes microbial communities in faecal pellets but not viability of dietary algal cells. Chemoecology 24, 79–84 (2014).
Chan, K. Y. & Heenan, D. P. Occurrence of Enchytraeid worms and some properties of their casts in an Australian soil under cropping. Soil Res. 33, 651–657 (1995).
Maaß, S., Caruso, T. & Rillig, M. C. Functional role of microarthropods in soil aggregation. Pedobiologia (Jena.) 58, 59–63 (2015).
Makoto, K., Arai, M. & Kaneko, N. Change the menu? Species-dependent feeding responses of millipedes to climate warming and the consequences for plant–soil nitrogen dynamics. Soil Biol. Biochem. 72, 19–25 (2014).
Fujimaki, R., Sato, Y., Okai, N. & Kaneko, N. The train millipede (Parafontaria laminata) mediates soil aggregation and N dynamics in a Japanese larch forest. Geoderma 159, 216–220 (2010).
Jungerius, P. D., van den Ancker, J. A. M. & Mücher, H. J. The contribution of termites to the microgranular structure of soils on the Uasin Gishu Plateau, Kenya. CATENA 34, 349–363 (1999).
Kaiser, K. & Guggenberger, G. Mineral surfaces and soil organic matter. Eur. J. Soil Sci. 54, 219–236 (2003).
Jouquet, P., Bottinelli, N., Lata, J.-C., Mora, P. & Caquineau, S. Role of the fungus-growing termite Pseudacanthotermes spiniger (Isoptera, Macrotermitinae) in the dynamic of clay and soil organic matter content. An experimental analysis. Geoderma 139, 127–133 (2007).
Blume, H.-P. & Schad, P. Bodenkunde in Stichworten p. 238 (Springer Berlin Heidelberg, 2015).
Lejoly, J. et al. Effects of termite sheetings on soil properties under two contrasting soil management practices. Pedobiologia (Jena.). 76, 150573 (2019).
Mujinya, B. B. et al. Clay composition and properties in termite mounds of the Lubumbashi area, D.R. Congo. Geoderma 192, 304–315 (2013).
Carpenter, D., Hodson, M. E., Eggleton, P. & Kirk, C. Earthworm induced mineral weathering: Preliminary results. Eur. J. Soil Biol. 43, S176–S183 (2007).
Hušák, M., Frouz, J. & Had, J. Can earthworm gut passage modify clay minerals structure: preliminary results. in Contributions to Soil Zoology in Central Europe 1 (eds. Tajovský, K., Schlaghamerský, J. & Pižl, V.) 37–39 (2005).
Eusterhues, K. et al. Characterization of ferrihydrite-soil organic matter coprecipitates by x-ray diffraction and mössbauer spectroscopy. Environ. Sci. {} Technol. 42, 7891–7897 (2008).
Brunauer, S., Emmett, P. H. & Teller, E. Adsorption of Gases in Multimolecular Layers. J. Am. Chem. Soc. 60, 309–319 (1938).
Meysman, F. J. R., Middelburg, J. J. & Heip, C. H. R. Bioturbation: a fresh look at Darwin’s last idea. Trends Ecol. Evol. 21, 688–695 (2006).
Darwin, C. The Formation of Vegetable Mould, Through the Action of Worms: With Observations on Their Habits. p. 326 (Murray, J., 1892).
Paton, T. R., Humphreys, G. S. & Mitchell, P. B. Soils: A New Global View. p. 234 (Yale University Press, 1995).
Ma, Y., Filley, T. R., Szlavecz, K. & McCormick, M. K. Controls on wood and leaf litter incorporation into soil fractions in forests at different successional stages. Soil Biol. Biochem. 69, 212–222 (2014).
Capowiez, Y., Bottinelli, N., Sammartino, S., Michel, E. & Jouquet, P. Morphological and functional characterisation of the burrow systems of six earthworm species (Lumbricidae). Biol. Fertil. Soils 51, 869–877 (2015).
Pham, Q. V. et al. Using morpho-anatomical traits to predict the effect of earthworms on soil water infiltration. Geoderma 429, 116245 (2023).
Lee, K. E. Earthworms: Their Ecology and Relationships with Soils and Land Use. p. 411 (Academic Press, 1985).
Bastardie, F., Capowiez, Y. & Cluzeau, D. 3D characterisation of earthworm burrow systems in natural soil cores collected from a 12-year-old pasture. Appl. Soil Ecol. 30, 34–46 (2005).
Kuzyakov, Y. & Blagodatskaya, E. Microbial hotspots and hot moments in soil: Concept & review. Soil Biol. Biochem. 83, 184–199 (2015).
Eisenhauer, N. The action of an animal ecosystem engineer: Identification of the main mechanisms of earthworm impacts on soil microarthropods. Pedobiologia (Jena.). 53, 343–352 (2010).
Brown, G. G. How do earthworms affect microfloral and faunal community diversity? BT – The Significance and Regulation of Soil Biodiversity: Proceedings of the International Symposium on Soil Biodiversity, held at Michigan State University, East Lansing, May 3–6, 199. in (eds. Collins, H. P., Robertson, G. P. & Klug, M. J.) 247–269 (Springer Netherlands, 1995). https://doi.org/10.1007/978-94-011-0479-1_22.
Brown, G. G., Barois, I. & Lavelle, P. Regulation of soil organic matter dynamics and microbial activityin the drilosphere and the role of interactionswith other edaphic functional domains. Eur. J. Soil Biol. 36, 177–198 (2000).
Görres, J. H., Savin, M. C. & Amador, J. A. Soil micropore structure and carbon mineralization in burrows and casts of an anecic earthworm (Lumbricus terrestris). Soil Biol. Biochem. 33, 1881–1887 (2001).
Schlüter, S. et al. Microscale carbon distribution around pores and particulate organic matter varies with soil moisture regime. Nat. Commun. 13, 2098 (2022).
Görres, J. H., Savin, M. C. & Amador, J. A. Dynamics of carbon and nitrogen mineralization, microbial biomass, and nematode abundance within and outside the burrow walls of anecic earthworms (Lumbricus terrestris). Soil Sci. 162, 666–671 (1997).
Hoang, D. T. T., Razavi, B. S., Kuzyakov, Y. & Blagodatskaya, E. Earthworm burrows: Kinetics and spatial distribution of enzymes of C-, N- and P- cycles. Soil Biol. Biochem. 99, 94–103 (2016).
Hoang, D. T. T., Bauke, S. L., Kuzyakov, Y. & Pausch, J. Rolling in the deep: Priming effects in earthworm biopores in topsoil and subsoil. Soil Biol. Biochem. 114, 59–71 (2017).
Lipiec, J., Frąc, M., Brzezińska, M., Turski, M. & Oszust, K. Linking microbial enzymatic activities and functional diversity of soil around earthworm burrows and casts. Front. Microbiol. 7, 1361 (2016).
Parkin, T. B. & Berry, E. C. Microbial nitrogen transformations in earthworm burrows. Soil Biol. Biochem. 31, 1765–1771 (1999).
Andriuzzi, W. S. et al. Organic matter composition and the protist and nematode communities around anecic earthworm burrows. Biol. Fertil. Soils 52, 91–100 (2016).
Guhra, T., Stolze, K., Schweizer, S. & Totsche, K. U. Earthworm mucus contributes to the formation of organo-mineral associations in soil. Soil Biol. Biochem. 145, 107785 (2020).
Don, A. et al. Organic carbon sequestration in earthworm burrows. Soil Biol. Biochem. 40, 1803–1812 (2008).
Taylor, A. R., Lenoir, L., Vegerfors, B. & Persson, T. Ant and earthworm bioturbation in cold-temperate ecosystems. Ecosystems 22, 981–994 (2019).
Viles, H. A., Goudie, A. S. & Goudie, A. M. Ants as geomorphological agents: A global assessment. Earth-Sci. Rev. 213, 103469 (2021).
Noriega, J. A. et al. Dung removal increases under higher dung beetle functional diversity regardless of grazing intensification. Nat. Commun. 14, 8070 (2023).
Cammeraat, E. L. H. & Risch, A. C. The impact of ants on mineral soil properties and processes at different spatial scales. J. Appl. Entomol. 132, 285–294 (2008).
Ehrle, A. et al. Yellow-meadow ant (Lasius flavus) mound development determines soil properties and growth responses of different plant functional types. Eur. J. Soil Biol. 81, 83–93 (2017).
Fall, S., Brauman, A. & Chotte, J.-L. Comparative distribution of organic matter in particle and aggregate size fractions in the mounds of termites with different feeding habits in Senegal: Cubitermes niokoloensis and Macrotermes bellicosus. Appl. Soil Ecol. 17, 131–140 (2001).
Frouz, J. & Jilková, V. The effect of ants on soil properties and processes (Hymenoptera: Formicidae). Myrmecological N. 11, 191–199 (2008).
Rückamp, D. et al. Soil genesis and heterogeneity of phosphorus forms and carbon below mounds inhabited by primary and secondary termites. Geoderma 170, 239–250 (2012).
Whitford, W. G. & Eldridge, D. J. Effects of ants and termites on soil and geomorphological processes. Treatise Geomorphol. 12, 281–292 (2013).
Jouquet, P. et al. Where do South-Indian termite mound soils come from? Appl. Soil Ecol. 117–118, 190–195 (2017).
Nkem, J. N., Lobry De Bruyn, L. A., Grant, C. D. & Hulugalle, N. R. The impact of ant bioturbation and foraging activities on surrounding soil properties. Pedobiologia (Jena.). 44, 609–621 (2000).
Chen, S. et al. Fine resolution map of top- and subsoil carbon sequestration potential in France. Sci. Total Environ. 630, 389–400 (2018).
Cheik, S., Harit, A., Bottinelli, N. & Jouquet, P. Bioturbation by dung beetles and termites. Do they similarly impact soil and hydraulic properties? Pedobiologia (Jena.) 95, 150845 (2022).
Kalisz, P. J. & Stone, E. L. Soil mixing by scarab beetles and pocket gophers in North-Central Florida. Soil Sci. Soc. Am. J. 48, 169–172 (1984).
Yamada, D., Imura, O., Shi, K. & Shibuya, T. Effect of tunneler dung beetles on cattle dung decomposition, soil nutrients and herbage growth. Grassl. Sci. 53, 121–129 (2007).
Cao, Q. et al. Differentiated impacts of the feeding-habits of three ant species on carbon mineralization in tropical forest soils. Eur. J. Soil Biol. 110, 103403 (2022).
Kristiansen, S. M. & Amelung, W. Abandoned anthills of Formica polyctena and soil heterogeneity in a temperate deciduous forest: morphology and organic matter composition. Eur. J. Soil Sci. 52, 355–363 (2001).
Zanne, A. E. et al. Termite sensitivity to temperature affects global wood decay rates. Science 377, 1440–1444 (2022).
Holter, P., Scholtz, C. H. & Wardhaugh, K. G. Dung feeding in adult scarabaeines (tunnellers and endocoprids): even large dung beetles eat small particles. Ecol. Entomol. 27, 169–176 (2002).
Meyer, S. T. et al. Leaf-cutting ants as ecosystem engineers: topsoil and litter perturbations around Atta cephalotes nests reduce nutrient availability. Ecol. Entomol. 38, 497–504 (2013).
Cammeraat, L. H., Willott, S. J., Compton, S. G. & Incoll, L. D. The effects of ants’ nests on the physical, chemical and hydrological properties of a rangeland soil in semi-arid Spain. Geoderma 105, 1–20 (2002).
Frouz, J., Holec, M. & Kalčík, J. The effect of Lasius niger (Hymenoptera, Formicidae) ant nest on selected soil chemical properties. Pedobiologia (Jena.). 47, 205–212 (2003).
Jílková, V., Matějíček, L. & Frouz, J. Changes in the pH and other soil chemical parameters in soil surrounding wood ant (Formica polyctena) nests. Eur. J. Soil Biol. 47, 72–76 (2011).
Jouquet, P., Harit, A., Bottinelli, N. & Eldridge, D. J. Termite bioturbation: Fungal versus non-fungal building strategies lead to different soil sheeting stability. Soil Biol. Biochem. 176, 108868 (2023).
Lenoir, A., D’Ettorre, P., Errard, C. & Hefetz, A. Chemical ecology and social parasitism in ants. Annu. Rev. Entomol. 46, 573–599 (2001).
Véle, A., Frouz, J., Holuša, J. & Kalčík, J. Chemical properties of forest soils as affected by nests of Myrmica ruginodis (Formicidae). Biol. (Bratisl.). 65, 122–127 (2010).
Coûteaux, M.-M., Aloui, A. & Kurz-Besson, C. Pinus halepensis litter decomposition in laboratory microcosms as influenced by temperature and a millipede, Glomeris marginata. Appl. Soil Ecol. 20, 85–96 (2002).
Des Marteaux, L. E., Kullik, S. A., Habash, M. & Schmidt, J. M. Terrestrial isopods porcellio scaber and oniscus asellus (crustacea: isopoda) increase bacterial abundance and modify microbial community structure in leaf litter microcosms: a short-term decomposition study. Microb. Ecol. 80, 690–702 (2020).
Yang, X., Shao, M. & Li, T. Effects of terrestrial isopods on soil nutrients during litter decomposition. Geoderma 376, 114546 (2020).
Förster, B., Muroya, K. & Garcia, M. Plant growth and microbial activity in a tropical soil amended with faecal pellets from millipedes and woodlice. Pedobiologia (Jena.). 50, 281–290 (2006).
Hanisch, J., Engell, I., Linsler, D., Scheu, S. & Potthoff, M. The role of Collembola for litter decomposition under minimum and conventional tillage. J. Plant Nutr. Soil Sci. 185, 529–538 (2022).
HÄttenschwiler, S. & Bretscher, D. Isopod effects on decomposition of litter produced under elevated CO2, N deposition and different soil types. Glob. Chang. Biol. 7, 565–579 (2001).
Hedde, M., Bureau, F., Akpa-Vinceslas, M., Aubert, M. & Decaëns, T. Beech leaf degradation in laboratory experiments: Effects of eight detritivorous invertebrate species. Appl. Soil Ecol. 35, 291–301 (2007).
Irmler, U. Changes in the fauna and its contribution to mass loss and N release during leaf litter decomposition in two deciduous forests. Pedobiologia (Jena.). 44, 105–118 (2000).
Loranger-Merciris, G., Laossi, K.-R. & Bernhard-Reversat, F. Soil aggregation in a laboratory experiment: Interactions between earthworms, woodlice and litter palatability. Pedobiologia (Jena.). 51, 439–443 (2008).
Patoine, G. et al. Plant litter functional diversity effects on litter mass loss depend on the macro-detritivore community. Pedobiologia (Jena.). 65, 29–42 (2017).
Veldhuis, M. P., Laso, F. J., Olff, H. & Berg, M. P. Termites promote resistance of decomposition to spatiotemporal variability in rainfall. Ecology 98, 467–477 (2017).
Seibold, S. et al. The contribution of insects to global forest deadwood decomposition. Nature 597, 77–81 (2021).
David, J. F. The role of litter-feeding macroarthropods in decomposition processes: A reappraisal of common views. Soil Biol. Biochem. 76, 109–118 (2014).
Booth, S., Kurtz, B., de Heer, M. I., Mooney, S. J. & Sturrock, C. J. Tracking wireworm burrowing behaviour in soil over time using 3D X-ray computed tomography. Pest Manag. Sci. 76, 2653–2662 (2020).
Adachi, H., Ozawa, M., Yagi, S., Seita, M. & Kondo, S. Pivot burrowing of scarab beetle (Trypoxylus dichotomus) larva. Sci. Rep. 11, 14594 (2021).
Bryson, H. R. The identification of soil insects by their burrow characteristics. Trans. Kans. Acad. Sci. 42, 245–253 (1939).
Hembree, D. I. Neoichnology of burrowing millipedes: linking modern burrow morphology, organism behavior, and sediment properties to interpret continental ichnofossils. Palaios 24, 425–439 (2009).
Bowen, J. J. & Hembree, D. I. Neoichnology of two spirobolid millipedes: Improving the understanding of the burrows of soil detritivores. Palaeontol. Electron. 17, 17.1.18A (2014).
Mele, G., Buscemi, G., Gargiulo, L. & Terribile, F. Soil burrow characterization by 3D image analysis: Prediction of macroinvertebrate groups from biopore size distribution parameters. Geoderma 404, 115292 (2021).
Briones, M. J. I., Carreira, J. & Ineson, P. Cognettia sphagnetorum (Enchytraeidae) and nutrient cycling in organic soils: a microcosm experiment. Appl. Soil Ecol. 9, 289–294 (1998).
Carrera, N., Barreal, M. E., Rodeiro, J. & Briones, M. J. I. Interactive effects of temperature, soil moisture and enchytraeid activities on C losses from a peatland soil. Pedobiologia (Jena.). 54, 291–299 (2011).
Lappalainen, M. et al. Release of carbon in different molecule size fractions from decomposing boreal mor and peat as affected by enchytraeid worms. Water, Air, Soil Pollut. 229, 240 (2018).
Laurén, A. et al. Nitrogen and carbon dynamics and the role of enchytraeid worms in decomposition of l, f and h layers of boreal mor. Water, Air, Soil Pollut. 223, 3701–3719 (2012).
Liiri, M., Ilmarinen, K. & Setälä, H. The significance of Cognettia sphagnetorum(Enchytraeidae) on nitrogen availability and plant growth in wood ash-treated humus soil. Plant Soil 246, 31–39 (2002).
Cole, L., Bardgett, R. D. & Ineson, P. Enchytraeid worms (Oligochaeta) enhance mineralization of carbon in organic upland soils. Eur. J. Soil Sci. 51, 185–192 (2000).
Cragg, R. G. & Bardgett, R. D. How changes in soil faunal diversity and composition within a trophic group influence decomposition processes. Soil Biol. Biochem. 33, 2073–2081 (2001).
Filser, J. The role of Collembola in carbon and nitrogen cycling in soil: Proceedings of the Xth international Colloquium on Apterygota, České Budějovice 2000: Apterygota at the Beginning of the Third Millennium. Pedobiologia (Jena.). 46, 234–245 (2002).
Menéndez, R., Webb, P. & Orwin, K. H. Complementarity of dung beetle species with different functional behaviours influence dung–soil carbon cycling. Soil Biol. Biochem. 92, 142–148 (2016).
Kaiser, K. & Kalbitz, K. Cycling downwards – dissolved organic matter in soils. Soil Biol. Biochem. 52, 29–32 (2012).
Evans, K. S. et al. Soil fauna accelerate dung pat decomposition and nutrient cycling into grassland soil. Rangel. Ecol. Manag. 72, 667–677 (2019).
Barragán, F. et al. The rolling dung master: an ecosystem engineer beetle mobilizing soil nutrients to enhance plant growth across a grassland management intensity gradient in drylands. J. Arid Environ. 197, 104673 (2022).
Haimi, J. & Siira-Pietikäinen, A. Activity and role of the enchytraeid worm Cognettia sphagnetorum (Vejd.) (Oligochaeta: Enchytraeidae) in organic and mineral forest soil. Pedobiologia (Jena.). 47, 303–310 (2003).
Kaleri, A. R. et al. Effects of dung beetle-amended soil on growth, physiology, and metabolite contents of bok choy and improvement in soil conditions. J. Soil Sci. Plant Nutr. 20, 2671–2683 (2020).
Engell, I. et al. Crop residue displacement by soil inversion: Annelid responses and their impact on carbon and nitrogen dynamics in a lab-based mesocosm study. Appl. Soil Ecol. 167, 104151 (2021).
Gan, H., Liang, C. & Wickings, K. Root herbivores accelerate carbon inputs to soil and drive changes in biogeochemical processes. Rhizosphere 6, 112–115 (2018).
Kaleri, A. R. et al. Dung beetle improves soil bacterial diversity and enzyme activity and enhances growth and antioxidant content of chinese cabbage (Brassica rapa ssp. pekinensis). J. Soil Sci. Plant Nutr. 21, 3387–3401 (2021).
Coulibaly, S. F. M. et al. Functional assemblages of collembola determine soil microbial communities and associated functions. Front. Environ. Sci. 7, 52 (2019).
Franklin, S. M. et al. The unexplored role of preferential flow in soil carbon dynamics. Soil Biol. Biochem. 161, 108398 (2021).
Erktan, A., Or, D. & Scheu, S. The physical structure of soil: Determinant and consequence of trophic interactions. Soil Biol. Biochem. 148, 107876 (2020).
Brownlee, C. & Jennings, D. H. Long distance translocation in Serpula lacrimans: Velocity estimates and the continuous monitoring of induced perturbations. Trans. Br. Mycol. Soc. 79, 143–148 (1982).
Connolly, J. H. & Jellison, J. Two-way translocation of cations by the brown rot fungus Gloeophyllum trabeum. Int. Biodeterior. Biodegrad. 39, 181–188 (1997).
Yang, P. & van Elsas, J. D. Mechanisms and ecological implications of the movement of bacteria in soil. Appl. Soil Ecol. 129, 112–120 (2018).
Bonkowski, M., Villenave, C. & Griffiths, B. Rhizosphere fauna: the functional and structural diversity of intimate interactions of soil fauna with plant roots. Plant Soil 321, 213–233 (2009).
Dighton, J., Jones, H. E., Robinson, C. H. & Beckett, J. The role of abiotic factors, cultivation practices and soil fauna in the dispersal of genetically modified microorganisms in soils. Appl. Soil Ecol. 5, 109–131 (1997).
Standing, D., Knox, O. G. G., Mullins, C. E., Killham, K. K. & Wilson, M. J. Influence of Nematodes on Resource Utilization by Bacteria—an in vitro Study. Microb. Ecol. 52, 444–450 (2006).
Angst, G. et al. Stabilized microbial necromass in soil is more strongly coupled with microbial diversity than the bioavailability of plant inputs. Soil Biol. Biochem. 190, 109323 (2024).
Vašutová, M. et al. Taxi drivers: the role of animals in transporting mycorrhizal fungi. Mycorrhiza 29, 413–434 (2019).
Lunde, L. F. et al. Beetles provide directed dispersal of viable spores of a keystone wood decay fungus. Fungal Ecol. 63, 101232 (2023).
Aanen, D. K. & Boomsma, J. J. Social-insect fungus farming. Curr. Biol. 16, R1014–R1016 (2006).
Kitabayashi, K., Kitamura, S. & Tuno, N. Fungal spore transport by omnivorous mycophagous slug in temperate forest. Ecol. Evol. 12, e8565 (2022).
Swanson, A. C. et al. Welcome to the Atta world: A framework for understanding the effects of leaf-cutter ants on ecosystem functions. Funct. Ecol. 33, 1386–1399 (2019).
Ahmad, F. et al. Multipartite symbioses in fungus-growing termites (Blattodea: Termitidae, Macrotermitinae) for the degradation of lignocellulose. Insect Sci. 28, 1512–1529 (2021).
Gange, A. C. Translocation of mycorrhizal fungi by earthworms during early succession. Soil Biol. Biochem. 25, 1021–1026 (1993).
Geisen, S. The bacterial-fungal energy channel concept challenged by enormous functional versatility of soil protists. Soil Biol. Biochem. 102, 22–25 (2016).
Clarholm, M. Protozoan grazing of bacteria in soil—impact and importance. Microb. Ecol. 7, 343–350 (1981).
Kuikman, P. J., Jansen, A. G., van Veen, J. A. & Zehnder, A. J. B. Protozoan predation and the turnover of soil organic carbon and nitrogen in the presence of plants. Biol. Fertil. Soils 10, 22–28 (1990).
Rosenberg, K. et al. Soil amoebae rapidly change bacterial community composition in the rhizosphere of Arabidopsis thaliana. ISME J. 3, 675–684 (2009).
Ingham, R. E., Trofymow, J. A., Ingham, E. R. & Coleman, D. C. Interactions of bacteria, fungi, and their nematode grazers: effects on nutrient cycling and plant growth. Ecol. Monogr. 55, 119–140 (1985).
Jiang, Y. et al. Nematodes and microbial community affect the sizes and turnover rates of organic carbon pools in soil aggregates. Soil Biol. Biochem. 119, 22–31 (2018).
Jiang, Y. et al. Nematode grazing promotes bacterial community dynamics in soil at the aggregate level. ISME J. 11, 2705–2717 (2017).
De Mesel, I. et al. Top-down impact of bacterivorous nematodes on the bacterial community structure: a microcosm study. Environ. Microbiol. 6, 733–744 (2004).
Kreuzer, K. et al. Grazing of a common species of soil protozoa (Acanthamoeba castellanii) affects rhizosphere bacterial community composition and root architecture of rice (Oryza sativa L.). Soil Biol. Biochem. 38, 1665–1672 (2006).
Xiao, H.-F., Li, G., Li, D.-M., Hu, F. & Li, H.-X. Effect of different bacterial-feeding nematode species on soil bacterial numbers, activity, and community composition. Pedosphere 24, 116–124 (2014).
Jin, X., Wang, Z., Wu, F., Li, X. & Zhou, X. Litter mixing alters microbial decomposer community to accelerate tomato root litter decomposition. Microbiol. Spectr. 10, e0018622 (2022).
Mielke, L. et al. Nematode grazing increases the allocation of plant-derived carbon to soil bacteria and saprophytic fungi, and activates bacterial species of the rhizosphere. Pedobiologia (Jena.). 90, 150787 (2022).
Rashidi, G. & Ostrowski, E. A. Phagocyte chase behaviours: discrimination between Gram-negative and Gram-positive bacteria by amoebae. Biol. Lett. 15, 20180607 (2019).
Rønn, R., McCaig, A. E., Griffiths, B. S. & Prosser, J. I. Impact of protozoan grazing on bacterial community structure in soil microcosms. Appl. Environ. Microbiol. 68, 6094–6105 (2002).
Shu, L. et al. A dormant amoeba species can selectively sense and predate on different soil bacteria. Funct. Ecol. 35, 1708–1721 (2021).
Fanin, N. et al. The ratio of Gram-positive to Gram-negative bacterial PLFA markers as an indicator of carbon availability in organic soils. Soil Biol. Biochem. 128, 111–114 (2019).
Kramer, C. & Gleixner, G. Variable use of plant- and soil-derived carbon by microorganisms in agricultural soils. Soil Biol. Biochem. 38, 3267–3278 (2006).
Balasooriya, W. K., Denef, K., Huygens, D. & Boeckx, P. Translocation and turnover of rhizodeposit carbon within soil microbial communities of an extensive grassland ecosystem. Plant Soil 376, 61–73 (2014).
Buckeridge, K. M. et al. Sticky dead microbes: rapid abiotic retention of microbial necromass in soil. Soil Biol. Biochem. 149, 107929 (2020).
Bonkowski, M., Cheng, W., Griffiths, B. S., Alphei, J. & Scheu, S. Microbial-faunal interactions in the rhizosphere and effects on plant growth§1Paper presented at the 16th World Congress of Soil Science, 20–26 August 1998, Montpellier, France. Eur. J. Soil Biol. 36, 135–147 (2000).
Bonkowski, M. & Brandt, F. Do soil protozoa enhance plant growth by hormonal effects? Soil Biol. Biochem. 34, 1709–1715 (2002).
Frey, S. D., Gupta, V. V. S. R., Elliott, E. T. & Paustian, K. Protozoan grazing affects estimates of carbon utilization efficiency of the soil microbial community. Soil Biol. Biochem. 33, 1759–1768 (2001).
Miltner, A., Bombach, P., Schmidt-Brücken, B. & Kästner, M. SOM genesis: Microbial biomass as a significant source. Biogeochemistry 111, 41–55 (2012).
Erktan, A., Rillig, M. C., Carminati, A., Jousset, A. & Scheu, S. Protists and collembolans alter microbial community composition, C dynamics and soil aggregation in simplified consumer–prey systems. Biogeosciences 17, 4961–4980 (2020).
Koukol, O., Mourek, J., Janovský, Z. & Černá, K. Do oribatid mites (Acari: Oribatida) show a higher preference for ubiquitous vs. specialized saprotrophic fungi from pine litter? Soil Biol. Biochem. 41, 1124–1131 (2009).
Pollierer, M. M. & Scheu, S. Stable isotopes of amino acids indicate that soil decomposer microarthropods predominantly feed on saprotrophic fungi. Ecosphere 12, e03425 (2021).
Schneider, K., Renker, C. & Maraun, M. Oribatid mite (Acari, Oribatida) feeding on ectomycorrhizal fungi. Mycorrhiza 16, 67–72 (2005).
Crowther, T. W. & A’Bear, A. D. Impacts of grazing soil fauna on decomposer fungi are species-specific and density-dependent. Fungal Ecol. 5, 277–281 (2012).
Crowther, T. W., Jones, T. H. & Boddy, L. Species-specific effects of grazing invertebrates on mycelial emergence and growth from woody resources into soil. Fungal Ecol. 4, 333–341 (2011).
A’Bear, A. D., Boddy, L., Raspotnig, G. & Jones, T. H. Non-trophic effects of oribatid mites on cord-forming basidiomycetes in soil microcosms. Ecol. Entomol. 35, 477–484 (2010).
Ek, H., Sjögren, M., Arnebrant, K. & Söderström, B. Extramatrical mycelial growth, biomass allocation and nitrogen uptake in ectomycorrhizal systems in response to collembolan grazing. Appl. Soil Ecol. 1, 155–169 (1994).
Hedlund, K. & Öhrn, M. S. Tritrophic interactions in a soil community enhance decomposition rates. Oikos 88, 585–591 (2000).
Kaneko, N., McLean, M. A. & Parkinson, D. Do mites and Collembola affect pine litter fungal biomass and microbial respiration? Appl. Soil Ecol. 9, 209–213 (1998).
Bonkowski, M., Griffiths, B. S. & Ritz, K. Food preferences of earthworms for soil fungi. Pedobiologia (Jena.) 44, 666–676 (2000).
Crowther, T. W. et al. Top-down control of soil fungal community composition by a globally distributed keystone consumer. Ecology 94, 2518–2528 (2013).
Crowther, T. W., Boddy, L. & Jones, T. H. Outcomes of fungal interactions are determined by soil invertebrate grazers. Ecol. Lett. 14, 1134–1142 (2011).
Domeignoz-Horta, L. A. et al. Microbial diversity drives carbon use efficiency in a model soil. Nat. Commun. 11, 3684 (2020).
Tao, F. et al. Microbial carbon use efficiency promotes global soil carbon storage. Nature 618, 981–985 (2023).
Potapov, A. M. & Tiunov, A. V. Stable isotope composition of mycophagous collembolans versus mycotrophic plants: Do soil invertebrates feed on mycorrhizal fungi? Soil Biol. Biochem. 93, 115–118 (2016).
Tiunov, A. V. & Scheu, S. Arbuscular mycorrhiza and Collembola interact in affecting community composition of saprotrophic microfungi. Oecologia 142, 636–642 (2005).
Frey, S. D. Mycorrhizal fungi as mediators of soil organic matter dynamics. Annu. Rev. Ecol. Evol. Syst. 50, 237–259 (2019).
Craig, M. E. et al. Tree mycorrhizal type predicts within-site variability in the storage and distribution of soil organic matter. Glob. Chang. Biol. 24, 3317–3330 (2018).
Gadgil, R. L. & Gadgil, P. D. Suppression of litter decomposition by mycorrhizal roots of Pinus radiata. N. Zeal. J. Sci. 5, 33–41 (1975).
Cotrufo, M. F., Ranalli, M. G., Haddix, M. L., Six, J. & Lugato, E. Soil carbon storage informed by particulate and mineral-associated organic matter. Nat. Geosci. 12, 989–994 (2019).
Crowther, T. W., Boddy, L. & Hefin Jones, T. Functional and ecological consequences of saprotrophic fungus–grazer interactions. ISME J. 6, 1992–2001 (2012).
Hannula, S. E., Jongen, R. & Morriën, E. Grazing by collembola controls fungal induced soil aggregation. Fungal Ecol. 65, 101284 (2023).
Scheu, S. The soil food web: structure and perspectives. Eur. J. Soil Biol. 38, 11–20 (2002).
Wardle, D. A., Williamson, W. M., Yeates, G. W. & Bonner, K. I. Trickle-down effects of aboveground trophic cascades on the soil food web. Oikos 111, 348–358 (2005).
Santos, P. F. & Whitford, W. G. The effects of microarthropods on litter decomposition in a chihuahuan desert Ecosystem. Ecology 62, 654–663 (1981).
Huhta, V. et al. Response of soil fauna to fertilization and manipulation of pH in coniferous forests. Acta. Fenn. 195, 7641 (1986).
Taylor, A. R., Pflug, A., Schröter, D. & Wolters, V. Impact of microarthropod biomass on the composition of the soil fauna community and ecosystem processes. Eur. J. Soil Biol. 46, 80–86 (2010).
Tao, J. et al. Earthworms reduce the abundance of nematodes and enchytraeids in a soil mesocosm experiment despite abundant food resources. Soil Sci. Soc. Am. J. 75, 1774–1778 (2011).
Wickenbrock, L. & Heisler, C. Influence of earthworm activity on the abundance of collembola in soil. Soil Biol. Biochem. 29, 517–521 (1997).
Boulton, A. M., Jaffee, B. A. & Scow, K. M. Effects of a common harvester ant (Messor andrei) on richness and abundance of soil biota. Appl. Soil Ecol. 23, 257–265 (2003).
Bonkowski, M., Scheu, S. & Schaefer, M. Interactions of earthworms (Octolasion lacteum), millipedes (Glomeris marginata) and plants (Hordelymus europaeus) in a beechwood on a basalt hill: implications for litter decomposition and soil formation. Appl. Soil Ecol. 9, 161–166 (1998).
Korb, J. & Linsenmair, K. E. Evaluation of predation risk in the collectively foraging termite Macrotermes bellicosus. Insectes Soc. 49, 264–269 (2002).
Lenoir, L., Persson, T., Bengtsson, J., Wallander, H. & Wirén, A. Bottom–up or top–down control in forest soil microcosms? Effects of soil fauna on fungal biomass and C/N mineralisation. Biol. Fertil. Soils 43, 281–294 (2007).
Vetter, S., Fox, O., Ekschmitt, K. & Wolters, V. Limitations of faunal effects on soil carbon flow: density dependence, biotic regulation and mutual inhibition. Soil Biol. Biochem. 36, 387–397 (2004).
A’Bear, A. D., Jones, T. H. & Boddy, L. Potential impacts of climate change on interactions among saprotrophic cord-forming fungal mycelia and grazing soil invertebrates. Fungal Ecol. 10, 34–43 (2014).
Pettit, T., Faulkner, K. J., Buchkowski, R. W., Kamath, D. & Lindo, Z. Changes in peatland soil fauna biomass alter food web structure and function under warming and hydrological changes. Eur. J. Soil Biol. 117, 103509 (2023).
Kardol, P., Reynolds, W. N., Norby, R. J. & Classen, A. T. Climate change effects on soil microarthropod abundance and community structure. Appl. Soil Ecol. 47, 37–44 (2011).
Peng, Y. et al. Responses of soil fauna communities to the individual and combined effects of multiple global change factors. Ecol. Lett. 25, 1961–1973 (2022).
Blankinship, J. C., Niklaus, P. A. & Hungate, B. A. A meta-analysis of responses of soil biota to global change. Oecologia 165, 553–565 (2011).
Lindberg, N., Engtsson, J. B. & Persson, T. Effects of experimental irrigation and drought on the composition and diversity of soil fauna in a coniferous stand. J. Appl. Ecol. 39, 924–936 (2002).
Meehan, M. L. et al. Response of soil fauna to simulated global change factors depends on ambient climate conditions. Pedobiologia (Jena.). 83, 150672 (2020).
Aupic-Samain, A. et al. Water availability rather than temperature control soil fauna community structure and prey–predator interactions. Funct. Ecol. 35, 1550–1559 (2021).
Vestergård, M., Dyrnum, K., Michelsen, A., Damgaard, C. & Holmstrup, M. Long-term multifactorial climate change impacts on mesofaunal biomass and nitrogen content. Appl. Soil Ecol. 92, 54–63 (2015).
Xu, G.-L., Kuster, T. M., Günthardt-Goerg, M. S., Dobbertin, M. & Li, M.-H. Seasonal exposure to drought and air warming affects soil collembola and mites. PLoS One 7, 1–9 (2012).
Hao, F. et al. Microbial community succession and its environment driving factors during initial fermentation of maotai-flavor Baijiu. Front. Microbiol. 12, 669201 (2021).
Watzinger, A. et al. Functional redundant soil fauna and microbial groups and processes were fairly resistant to drought in an agroecosystem. Biol. Fertil. Soils 59, 629–641 (2023).
Singh, J., Schädler, M., Demetrio, W., Brown, G. G. & Eisenhauer, N. Climate change effects on earthworms – a review. Soil Org. 91, 114–138 (2019).
Makkonen, M. et al. Traits explain the responses of a sub-arctic Collembola community to climate manipulation. Soil Biol. Biochem. 43, 377–384 (2011).
Phillips, H. et al. Global change and their environmental stressors have a significant impact on soil biodiversity – a meta-analysis. Authorea Prepr. https://doi.org/10.22541/au.167655684.49855023/v1 (2023).
Briones, M. J. I., Ostle, N. J., McNamara, N. P. & Poskitt, J. Functional shifts of grassland soil communities in response to soil warming. Soil Biol. Biochem. 41, 315–322 (2009).
Zhang, G. et al. The response of soil nematode fauna to climate drying and warming in Stipa breviflora desert steppe in Inner Mongolia, China. J. Soils Sediment. 20, 2166–2180 (2020).
Singh, J., Cameron, E., Reitz, T., Schädler, M. & Eisenhauer, N. Grassland management effects on earthworm communities under ambient and future climatic conditions. Eur. J. Soil Sci. 72, 343–355 (2021).
Tsiafouli, M. A. et al. Intensive agriculture reduces soil biodiversity across Europe. Glob. Chang. Biol. 21, 973–985 (2015).
Vanolli, B. S. et al. Epigeic fauna (with emphasis on ant community) response to land-use change for sugarcane expansion in Brazil. Acta Oecologica 110, 103702 (2021).
Bufebo, B., Elias, E. & Getu, E. Abundance and diversity of soil invertebrate macro-fauna in different land uses at Shenkolla watershed, South Central Ethiopia. J. Basic Appl. Zool. 82, 11 (2021).
Franco, A. L. C. et al. Loss of soil (macro)fauna due to the expansion of Brazilian sugarcane acreage. Sci. Total Environ. 563–564, 160–168 (2016).
Minor, M. A. & Cianciolo, J. M. Diversity of soil mites (Acari: Oribatida, Mesostigmata) along a gradient of land use types in New York. Appl. Soil Ecol. 35, 140–153 (2007).
Ponge, J. F. et al. Collembolan communities as bioindicators of land use intensification. Soil Biol. Biochem. 35, 813–826 (2003).
Kooch, Y., Tavakoli, M. & Akbarinia, M. Tree species could have substantial consequences on topsoil fauna: a feedback of land degradation/restoration. Eur. J. Res. 137, 793–805 (2018).
Marsden, C., Martin-Chave, A., Cortet, J., Hedde, M. & Capowiez, Y. How agroforestry systems influence soil fauna and their functions – a review. Plant Soil 453, 29–44 (2020).
Fründ, H.-C. et al. Using earthworms as model organisms in the laboratory: recommendations for experimental implementations. Pedobiologia (Jena.). 53, 119–125 (2010).
Ganault, P. et al. Earthworms and plants can decrease soil greenhouse gas emissions by modulating soil moisture fluctuations and soil macroporosity in a mesocosm experiment. PLoS One 19, 1–23 (2024).
Crecelius, A. C., Michalzik, B., Potthast, K., Meyer, S. & Schubert, U. S. Tracing the fate and transport of secondary plant metabolites in a laboratory mesocosm experiment by employing mass spectrometric imaging. Anal. Bioanal. Chem. 409, 3807–3820 (2017).
Jílková, V. et al. Macrofauna amplify plant litter decomposition and stabilization in arctic soils in a warming climate. Soil Biol. Biochem. 188, 109245 (2024).
Just, C. et al. A Simple Approach to Isolate Slow and Fast Cycling Organic Carbon Fractions in Central European Soils—Importance of Dispersion Method. Front. Soil Sci. 1, 692583 (2021).
Lavallee, J. M., Soong, J. L. & Cotrufo, M. F. Conceptualizing soil organic matter into particulate and mineral-associated forms to address global change in the 21st century. Glob. Chang. Biol. 26, 261–273 (2020).
Yin, R. et al. Climate change does not alter land-use effects on soil fauna communities. Appl. Soil Ecol. 140, 1–10 (2019).
Pollierer, M. M. et al. Compound-specific isotope analysis of amino acids as a new tool to uncover trophic chains in soil food webs. Ecol. Monogr. 89, e01384 (2019).
Glaser, B. Compound-specific stable-isotope (δ13C) analysis in soil science. J. Plant Nutr. Soil Sci. 168, 633–648 (2005).
Nakatsuka, H., Karasawa, T., Ohkura, T. & Wagai, R. Soil faunal effect on plant litter decomposition in mineral soil examined by two in-situ approaches: sequential density-size fractionation and micromorphology. Geoderma 357, 113910 (2020).
Chertov, O. G. Quantification of soil fauna metabolites and dead mass as humification sources in forest soils. Eurasia. Soil Sci. 49, 77–88 (2016).
Cheng, W. et al. Carbon budgeting in plant–soil mesocosms under elevated CO2: locally missing carbon? Glob. Chang. Biol. 6, 99–109 (2000).
Anthony, M. A., Bender, S. F. & van der Heijden, M. G. A. Enumerating soil biodiversity. Proc. Natl Acad. Sci. USA 120, e2304663120 (2023).
FAO, ITPS, GSBI, CBD & EC. State of knowledge of soil biodiversity – Status, challenges and potentialities. https://doi.org/10.4060/cb1928en (2020).