Wake, D. B. & Vredenburg, V. T. Are we in the midst of the sixth mass extinction? A view from the world of amphibians. Proc. Natl Acad. Sci. USA 105, 11466–11473 (2008).
Berger, L. et al. Chytridiomycosis causes amphibian mortality associated with population declines in the rain forests of Australia and Central America. Proc. Natl Acad. Sci. USA 95, 9031–9036 (1998).
Longcore, J. E., Pessier, A. P. & Nichols, D. K. Batrachochytrium dendrobatidis gen. et sp. nov., a chytrid pathogenic to amphibians. Mycologia 91, 219–227 (1999).
Scheele, B. C. et al. Amphibian fungal panzootic causes catastrophic and ongoing loss of biodiversity. Science 363, 1459–1463 (2019).
Stockwell, M., Clulow, S., Clulow, J. & Mahony, M. The impact of the amphibian chytrid fungus Batrachochytrium dendrobatidis on a green and golden bell frog Litoria aurea reintroduction program at the Hunter Wetlands Centre Australia in the Hunter Region of NSW. Aust. Zool. 34, 379–386 (2008).
Brannelly, L. A. et al. Chytrid infection and post‐release fitness in the reintroduction of an endangered alpine tree frog. Anim. Conserv. 19, 153–162 (2016).
Berger, L. et al. Effect of season and temperature on mortality in amphibians due to chytridiomycosis. Aust. Vet. J. 82, 434–439 (2004).
Waddle, A. W. et al. Amphibian resistance to chytridiomycosis increases following low‐virulence chytrid fungal infection or drug‐mediated clearance. J. Appl. Ecol. 58, 2053–2064 (2021).
Piotrowski, J. S., Annis, S. L. & Longcore, J. E. Physiology of Batrachochytrium dendrobatidis, a chytrid pathogen of amphibians. Mycologia 96, 9–15 (2004).
Voyles, J. et al. Diversity in growth patterns among strains of the lethal fungal pathogen Batrachochytrium dendrobatidis across extended thermal optima. Oecologia 184, 363–373 (2017).
Andre, S. E., Parker, J. & Briggs, C. J. Effect of temperature on host response to Batrachochytrium dendrobatidis infection in the mountain yellow-legged frog (Rana muscosa). J. Wildl. Dis. 44, 716–720 (2008).
Greenspan, S. E. et al. Realistic heat pulses protect frogs from disease under simulated rainforest frog thermal regimes. Funct. Ecol. 31, 2274–2286 (2017).
Cohen, J. M. et al. The thermal mismatch hypothesis explains host susceptibility to an emerging infectious disease. Ecol. Lett. 20, 184–193 (2017).
Bustamante, H. M., Livo, L. J. & Carey, C. Effects of temperature and hydric environment on survival of the Panamanian Golden Frog infected with a pathogenic chytrid fungus. Integr. Zool. 5, 143–153 (2010).
Savage, A. E., Sredl, M. J. & Zamudio, K. R. Disease dynamics vary spatially and temporally in a North American amphibian. Biol. Conserv. 144, 1910–1915 (2011).
Bell, S. C., Heard, G. W., Berger, L. & Skerratt, L. F. Connectivity over a disease risk gradient enables recovery of rainforest frogs. Ecol. Appl. 30, e02152 (2020).
Heard, G. W. et al. Refugia and connectivity sustain amphibian metapopulations afflicted by disease. Ecol. Lett. 18, 853–863 (2015).
Hettyey, A. et al. Mitigating disease impacts in amphibian populations: capitalizing on the thermal optimum mismatch between a pathogen and its host. Front. Ecol. Evol. 7, 254 (2019).
Sauer, E. L., Sperry, J. H. & Rohr, J. R. An efficient and inexpensive method for measuring long-term thermoregulatory behavior. J. Therm. Biol. 60, 231–236 (2016).
Sauer, E. L. et al. Variation in individual temperature preferences, not behavioural fever, affects susceptibility to chytridiomycosis in amphibians. Proc. R. Soc. B 285, 20181111 (2018).
Hamer, A. J., Lane, S. J. & Mahony, M. J. Retreat site selection during winter in the green and golden bell frog, Litoria aurea Lesson. J. Herpetol. 37, 541–545 (2003).
Abu Bakar, A. et al. Susceptibility to disease varies with ontogeny and immunocompetence in a threatened amphibian. Oecologia 181, 997–1009 (2016).
Hammond, T. T. et al. Overwinter behavior, movement, and survival in a recently reintroduced, endangered amphibian, Rana muscosa. J. Nat. Conserv. 64, 126086 (2021).
McMahon, T. A. et al. Amphibians acquire resistance to live and dead fungus overcoming fungal immunosuppression. Nature 511, 224–227 (2014).
Bakewell, L., Kelehear, C. & Graham, S. P. Impacts of temperature on immune performance in a desert anuran (Anaxyrus punctatus). J. Zool. 315, 49–57 (2021).
Valdez, J. et al. Microhabitat selection varies by sex and age class in the endangered green and golden bell frog Litoria aurea. Aust. Zool. 38, 223–234 (2016).
Sauer, E. L., Trejo, N., Hoverman, J. T. & Rohr, J. R. Behavioural fever reduces ranaviral infection in toads. Funct. Ecol. 33, 2172–2179 (2019).
Richards-Zawacki, C. L. Thermoregulatory behaviour affects prevalence of chytrid fungal infection in a wild population of Panamanian golden frogs. Proc. R. Soc. B 277, 519–528 (2010).
Puschendorf, R. et al. Environmental refuge from disease‐driven amphibian extinction. Conserv. Biol. 25, 956–964 (2011).
McCoy, C. M., Lind, C. M. & Farrell, T. M. Environmental and physiological correlates of the severity of clinical signs of snake fungal disease in a population of pigmy rattlesnakes, Sistrurus miliarius. Conserv. Physiol. 5, cow077 (2017).
Hopkins, S. R. et al. Continued preference for suboptimal habitat reduces bat survival with white-nose syndrome. Nat. Commun. 12, 166 (2021).
Berger, L. et al. Advances in managing chytridiomycosis for Australian frogs: Gradarius Firmus Victoria. Annu. Rev. Anim. Biosci. 12, 113–133 (2024).
Kosch, T. A. et al. Genetic approaches for increasing fitness in endangered species. Trends Ecol. Evol. 37, 332–225 (2022).
Heard, G. W. et al. Can habitat management mitigate disease impacts on threatened amphibians? Conserv. Lett. 11, e12375 (2018).
Rhoo, K. H. et al. Distinct host–mycobacterial pathogen interactions between resistant adult and tolerant tadpole life stages of Xenopus laevis. J. Immunol. 203, 2679–2688 (2019).
Clulow, S. et al. Elevated salinity blocks pathogen transmission and improves host survival from the global amphibian chytrid pandemic: Implications for translocations. J. Appl. Ecol. 55, 830–840 (2018).
Murray, K. et al. The distribution and host range of the pandemic disease chytridiomycosis in Australia, spanning surveys from 1956–2007. Ecology 91, 1557–1558 (2010).
O’hanlon, S. J. et al. Recent Asian origin of chytrid fungi causing global amphibian declines. Science 360, 621–627 (2018).
Fisher, M. C. et al. Development and worldwide use of non-lethal, and minimal population-level impact, protocols for the isolation of amphibian chytrid fungi. Sci. Rep. 8, 7772 (2018).
Waddle, A. W. et al. Systematic approach to isolating Batrachochytrium dendrobatidis. Dis. Aquat. Organ. 127, 243–247 (2018).
Jaeger, J. R. et al. Batrachochytrium dendrobatidis and the decline and survival of the relict leopard frog. EcoHealth 14, 285–295 (2017).
Waddle, A. W. et al. Population-level resistance to chytridiomycosis is life-stage dependent in an imperiled anuran. EcoHealth 16, 701–711 (2019).
Boyle, D. G., Boyle, D. B., Olsen, V., Morgan, J. A. T. & Hyatt, A. D. Rapid quantitative detection of chytridiomycosis (Batrachochytrium dendrobatidis) in amphibian samples using real-time Taqman PCR assay. Dis. Aquat. Organ. 60, 141–148 (2004).
Brannelly, L. A., Wetzel, D. P., West, M. & Richards-Zawacki, C. L. Optimized Batrachochytrium dendrobatidis DNA extraction of swab samples results in imperfect detection particularly when infection intensities are low. Dis. Aquat. Organ. 139, 233–243 (2020).
R Core Team. R: A Language and Environment for Statistical Computing. https://www.R-project.org/ (R Foundation for Statistical Computing, 2020).
Waddle, A. et al. Data for reinfection study, thermal preference study, behavioural fever study, and mesocosm study. Figshare https://doi.org/10.6084/m9.figshare.23672805 (2024).