Huxley, A. Reflections on Muscle Sherrington Lectures (Liverpool Univ. Press, 1980).
Needham, D. M. Machina Carnis: The Biochemistry of Muscular Contraction in its Historical Development (Cambridge Univ. Press, 1971).
Nyitrai, M. et al. What limits the velocity of fast-skeletal muscle contraction in mammals? J. Mol. Biol. 355, 432–442 (2006).
Swank, D. M., Vishnudas, V. K. & Maughan, D. W. An exceptionally fast actomyosin reaction powers insect flight muscle. Proc. Natl Acad. Sci. USA 103, 17543–17547 (2006).
Mead, A. F. et al. Fundamental constraints in synchronous muscle limit superfast motor control in vertebrates. eLife 6, e29425 (2017).
Gordon, A. M., Homsher, E. & Regnier, M. Regulation of contraction in striated muscle. Physiol. Rev. 80, 853–924 (2000).
Powers, J. D., Malingen, S. A., Regnier, M. & Daniel, T. L. The sliding filament theory since Andrew Huxley: multiscale and multidisciplinary muscle research. Annu. Rev. Biophys. 50, 373–400 (2021).
Millman, B. M. The filament lattice of striated muscle. Physiol. Rev. 78, 359–391 (1998).
Mogilner, A. & Manhart, A. Intracellular fluid mechanics: coupling cytoplasmic flow with active cytoskeletal gel. Annu. Rev. Fluid Mech. 50, 347–370 (2018).
Moeendarbary, E. et al. The cytoplasm of living cells behaves as a poroelastic material. Nat. Mater. 12, 253–261 (2013).
Skotheim, J. M. & Mahadevan, L. Physical limits and design principles for plant and fungal movements. Science 308, 1308–1310 (2005).
Rome, L. C. & Lindstedt, S. L. The quest for speed: muscles built for high-frequency contractions. Physiology 13, 261–268 (1998).
Syme, D. A. & Josephson, R. K. How to build fast muscles: synchronous and asynchronous designs. Integr. Comp. Biol. 42, 762–770 (2002).
Josephson, R. Contraction dynamics and power output of skeletal muscle. Annu. Rev. Physiol. 55, 527–546 (1993).
Szent-Györgyi, A. The contraction of myosin threads. Stud. Inst. Med. Chem. Univ. Szeged. 1, 17–26 (1942).
Bugyi, B. & Kellermayer, M. The discovery of actin: “to see what everyone else has seen, and to think what nobody has thought”. J. Muscle Res. Cell Motil. 41, 3–9 (2019).
Kaminer, B. Water loss during contracture of muscle. J. Gen. Physiol. 46, 131–142 (1962).
Trombitás, K., Baatsen, P., Schreuder, J. & Pollack, G. H. Contraction-induced movements of water in single fibres of frog skeletal muscle. J. Muscle Res. Cell Motil. 14, 573–584 (1993).
Cecchi, G., Bagni, M., Griffiths, P., Ashley, C. & Maeda, Y. Detection of radial crossbridge force by lattice spacing changes in intact single muscle fibers. Science 250, 1409–1411 (1990).
Pinto, J. & Win, R. Non-uniform strain distribution in papillary muscles. Am. J. Physiol. 233, H410–H416 (1977).
Neering, I., Quesenberry, L., Morris, V. & Taylor, S. Nonuniform volume changes during muscle contraction. Biophys. J. 59, 926–933 (1991).
Ghosh, S. et al. Deformation microscopy for dynamic intracellular and intranuclear mapping of mechanics with high spatiotemporal resolution. Cell Rep. 27, 1607–1620 (2019).
Washio, T., Shintani, S. A., Higuchi, H., Sugiura, S. & Hisada, T. Effect of myofibril passive elastic properties on the mechanical communication between motor proteins on adjacent sarcomeres. Sci. Rep. 9, 9355 (2019).
Kono, F., Kawai, S., Shimamoto, Y. & Ishiwata, S. Nanoscopic changes in the lattice structure of striated muscle sarcomeres involved in the mechanism of spontaneous oscillatory contraction (SPOC). Sci. Rep. 10, 16372 (2020).
Chan, W. P. & Dickinson, M. H. In vivo length oscillations of indirect flight muscles in the fruit fly Drosophila virilis. J. Exp. Biol. 199, 2767–2774 (1996).
Irving, T. & Maughan, D. In vivo X-ray diffraction of indirect flight muscle from Drosophila melanogaster. Biophys. J. 78, 2511–2515 (2000).
Cass, J. A. et al. A mechanism for sarcomere breathing: volume change and advective flow within the myofilament lattice. Biophys. J. 120, 4079–4090 (2021).
Malingen, S. A. et al. In vivo X-ray diffraction and simultaneous EMG reveal the time course of myofilament lattice dilation and filament stretch. J. Exp. Biol. 223, jeb224188 (2020).
Mijailovich, S. M. et al. Three-dimensional stochastic model of actin–myosin binding in the sarcomere lattice. J. Gen. Physiol. 148, 459–488 (2016).
Sleboda, D. A. & Roberts, T. J. Internal fluid pressure influences muscle contractile force. Proc. Natl Acad. Sci. USA 117, 1772–1778 (2020).
Malingen, S. A., Hood, K., Lauga, E., Hosoi, A. & Daniel, T. L. Fluid flow in the sarcomere. Arch. Biochem. Biophys. 706, 108923 (2021).
Wang, H. F. Theory of Linear Poroelasticity with Applications to Geomechanics and Hydrogeology (Princeton Univ. Press, 2017).
Schoenberg, M. Geometrical factors influencing muscle force development. I. The effect of filament spacing upon axial forces. Biophys. J. 30, 51–67 (1980).
Schoenberg, M. Geometrical factors influencing muscle force development. II. Radial forces. Biophys. J. 30, 69–77 (1980).
Guo, B. & Guilford, W. H. Mechanics of actomyosin bonds in different nucleotide states are tuned to muscle contraction. Proc. Natl Acad. Sci. USA 103, 9844–9849 (2006).
Pringle, J. W. S. The Croonian Lecture, 1977. Stretch activation of muscle: function and mechanism. Proc. R. Soc. Lond. B 201, 107–130 (1978).
Ait-Mou, Y. et al. Titin strain contributes to the frank–starling law of the heart by structural rearrangements of both thin-and thick-filament proteins. Proc. Natl Acad. Sci. USA 113, 2306–2311 (2016).
Guérin, T., Prost, J. & Joanny, J.-F. Dynamical behavior of molecular motor assemblies in the rigid and crossbridge models. Eur. Phys. J. E 34, 60 (2011).
Josephson, R. K., Malamud, J. G. & Stokes, D. R. Asynchronous muscle: a primer. J. Exp. Biol. 203, 2713–2722 (2000).
Biot, M. A. Mechanics of Incremental Deformations (John Wiley & Sons, 1965).
Fruchart, M., Scheibner, C. & Vitelli, V. Odd viscosity and odd elasticity. Annu. Rev. Condens. Matter Phys. 14, 471–510 (2023).
Scheibner, C. et al. Odd elasticity. Nat. Phys. 16, 475–480 (2020).
Zahalak, G. I. Non-axial muscle stress and stiffness. J. Theor. Biol. 182, 59–84 (1996).
Josephson, R. K. Mechanical power output from striated muscle during cyclic contraction. J. Exp. Biol. 114, 493–512 (1985).
Tanner, B. C. et al. Thick-to-thin filament surface distance modulates cross-bridge kinetics in drosophila flight muscle. Biophys. J. 103, 1275–1284 (2012).
Palmer, B. M. et al. Two-state model of acto-myosin attachment-detachment predicts c-process of sinusoidal analysis. Biophys. J. 93, 760–769 (2007).
Kawai, M. & Brandt, P. W. Sinusoidal analysis: a high resolution method for correlating biochemical reactions with physiological processes in activated skeletal muscles of rabbit, frog and crayfish. J. Muscle Res. Cell Motil. 1, 279–303 (1980).
Roca-Cusachs, P., Conte, V. & Trepat, X. Quantifying forces in cell biology. Nat. Cell Biol. 19, 742–751 (2017).
Marden, J. H. & Allen, L. R. Molecules, muscles, and machines: universal performance characteristics of motors. Proc. Natl Acad. Sci. USA 99, 4161–4166 (2002).
Ilton, M. et al. The principles of cascading power limits in small, fast biological and engineered systems. Science 360, eaao1082 (2018).
Labonte, D. A theory of physiological similarity in muscle-driven motion. Proc. Natl Acad. Sci. USA 120, e2221217120 (2023).
Mirvakili, S. M. & Hunter, I. W. Artificial muscles: mechanisms, applications, and challenges. Adv. Mater. 30, 1704407 (2018).
de Gennes, P.-G. A semi-fast artificial muscle. C. R. Acad. Sci. IIB 5, 343–348 (1997).