41586 2024 7582 Fig1 HTML

Hotspot shelters stimulate frog resistance to chytridiomycosis

Posted by


  • Wake, D. B. & Vredenburg, V. T. Are we in the midst of the sixth mass extinction? A view from the world of amphibians. Proc. Natl Acad. Sci. USA 105, 11466–11473 (2008).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Berger, L. et al. Chytridiomycosis causes amphibian mortality associated with population declines in the rain forests of Australia and Central America. Proc. Natl Acad. Sci. USA 95, 9031–9036 (1998).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Longcore, J. E., Pessier, A. P. & Nichols, D. K. Batrachochytrium dendrobatidis gen. et sp. nov., a chytrid pathogenic to amphibians. Mycologia 91, 219–227 (1999).

    Article 

    Google Scholar
     

  • Scheele, B. C. et al. Amphibian fungal panzootic causes catastrophic and ongoing loss of biodiversity. Science 363, 1459–1463 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Stockwell, M., Clulow, S., Clulow, J. & Mahony, M. The impact of the amphibian chytrid fungus Batrachochytrium dendrobatidis on a green and golden bell frog Litoria aurea reintroduction program at the Hunter Wetlands Centre Australia in the Hunter Region of NSW. Aust. Zool. 34, 379–386 (2008).

    Article 

    Google Scholar
     

  • Brannelly, L. A. et al. Chytrid infection and post‐release fitness in the reintroduction of an endangered alpine tree frog. Anim. Conserv. 19, 153–162 (2016).

    Article 

    Google Scholar
     

  • Berger, L. et al. Effect of season and temperature on mortality in amphibians due to chytridiomycosis. Aust. Vet. J. 82, 434–439 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Waddle, A. W. et al. Amphibian resistance to chytridiomycosis increases following low‐virulence chytrid fungal infection or drug‐mediated clearance. J. Appl. Ecol. 58, 2053–2064 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Piotrowski, J. S., Annis, S. L. & Longcore, J. E. Physiology of Batrachochytrium dendrobatidis, a chytrid pathogen of amphibians. Mycologia 96, 9–15 (2004).

    Article 
    PubMed 

    Google Scholar
     

  • Voyles, J. et al. Diversity in growth patterns among strains of the lethal fungal pathogen Batrachochytrium dendrobatidis across extended thermal optima. Oecologia 184, 363–373 (2017).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Andre, S. E., Parker, J. & Briggs, C. J. Effect of temperature on host response to Batrachochytrium dendrobatidis infection in the mountain yellow-legged frog (Rana muscosa). J. Wildl. Dis. 44, 716–720 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Greenspan, S. E. et al. Realistic heat pulses protect frogs from disease under simulated rainforest frog thermal regimes. Funct. Ecol. 31, 2274–2286 (2017).

    Article 

    Google Scholar
     

  • Cohen, J. M. et al. The thermal mismatch hypothesis explains host susceptibility to an emerging infectious disease. Ecol. Lett. 20, 184–193 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Bustamante, H. M., Livo, L. J. & Carey, C. Effects of temperature and hydric environment on survival of the Panamanian Golden Frog infected with a pathogenic chytrid fungus. Integr. Zool. 5, 143–153 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Savage, A. E., Sredl, M. J. & Zamudio, K. R. Disease dynamics vary spatially and temporally in a North American amphibian. Biol. Conserv. 144, 1910–1915 (2011).

    Article 

    Google Scholar
     

  • Bell, S. C., Heard, G. W., Berger, L. & Skerratt, L. F. Connectivity over a disease risk gradient enables recovery of rainforest frogs. Ecol. Appl. 30, e02152 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Heard, G. W. et al. Refugia and connectivity sustain amphibian metapopulations afflicted by disease. Ecol. Lett. 18, 853–863 (2015).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Hettyey, A. et al. Mitigating disease impacts in amphibian populations: capitalizing on the thermal optimum mismatch between a pathogen and its host. Front. Ecol. Evol. 7, 254 (2019).

    Article 

    Google Scholar
     

  • Sauer, E. L., Sperry, J. H. & Rohr, J. R. An efficient and inexpensive method for measuring long-term thermoregulatory behavior. J. Therm. Biol. 60, 231–236 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sauer, E. L. et al. Variation in individual temperature preferences, not behavioural fever, affects susceptibility to chytridiomycosis in amphibians. Proc. R. Soc. B 285, 20181111 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hamer, A. J., Lane, S. J. & Mahony, M. J. Retreat site selection during winter in the green and golden bell frog, Litoria aurea Lesson. J. Herpetol. 37, 541–545 (2003).

    Article 

    Google Scholar
     

  • Abu Bakar, A. et al. Susceptibility to disease varies with ontogeny and immunocompetence in a threatened amphibian. Oecologia 181, 997–1009 (2016).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Hammond, T. T. et al. Overwinter behavior, movement, and survival in a recently reintroduced, endangered amphibian, Rana muscosa. J. Nat. Conserv. 64, 126086 (2021).

    Article 

    Google Scholar
     

  • McMahon, T. A. et al. Amphibians acquire resistance to live and dead fungus overcoming fungal immunosuppression. Nature 511, 224–227 (2014).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bakewell, L., Kelehear, C. & Graham, S. P. Impacts of temperature on immune performance in a desert anuran (Anaxyrus punctatus). J. Zool. 315, 49–57 (2021).

    Article 

    Google Scholar
     

  • Valdez, J. et al. Microhabitat selection varies by sex and age class in the endangered green and golden bell frog Litoria aurea. Aust. Zool. 38, 223–234 (2016).

    Article 

    Google Scholar
     

  • Sauer, E. L., Trejo, N., Hoverman, J. T. & Rohr, J. R. Behavioural fever reduces ranaviral infection in toads. Funct. Ecol. 33, 2172–2179 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Richards-Zawacki, C. L. Thermoregulatory behaviour affects prevalence of chytrid fungal infection in a wild population of Panamanian golden frogs. Proc. R. Soc. B 277, 519–528 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Puschendorf, R. et al. Environmental refuge from disease‐driven amphibian extinction. Conserv. Biol. 25, 956–964 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • McCoy, C. M., Lind, C. M. & Farrell, T. M. Environmental and physiological correlates of the severity of clinical signs of snake fungal disease in a population of pigmy rattlesnakes, Sistrurus miliarius. Conserv. Physiol. 5, cow077 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hopkins, S. R. et al. Continued preference for suboptimal habitat reduces bat survival with white-nose syndrome. Nat. Commun. 12, 166 (2021).

    Article 
    MathSciNet 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Berger, L. et al. Advances in managing chytridiomycosis for Australian frogs: Gradarius Firmus Victoria. Annu. Rev. Anim. Biosci. 12, 113–133 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Kosch, T. A. et al. Genetic approaches for increasing fitness in endangered species. Trends Ecol. Evol. 37, 332–225 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Heard, G. W. et al. Can habitat management mitigate disease impacts on threatened amphibians? Conserv. Lett. 11, e12375 (2018).

    Article 

    Google Scholar
     

  • Rhoo, K. H. et al. Distinct host–mycobacterial pathogen interactions between resistant adult and tolerant tadpole life stages of Xenopus laevis. J. Immunol. 203, 2679–2688 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Clulow, S. et al. Elevated salinity blocks pathogen transmission and improves host survival from the global amphibian chytrid pandemic: Implications for translocations. J. Appl. Ecol. 55, 830–840 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Murray, K. et al. The distribution and host range of the pandemic disease chytridiomycosis in Australia, spanning surveys from 1956–2007. Ecology 91, 1557–1558 (2010).

    Article 

    Google Scholar
     

  • O’hanlon, S. J. et al. Recent Asian origin of chytrid fungi causing global amphibian declines. Science 360, 621–627 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fisher, M. C. et al. Development and worldwide use of non-lethal, and minimal population-level impact, protocols for the isolation of amphibian chytrid fungi. Sci. Rep. 8, 7772 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Waddle, A. W. et al. Systematic approach to isolating Batrachochytrium dendrobatidis. Dis. Aquat. Organ. 127, 243–247 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jaeger, J. R. et al. Batrachochytrium dendrobatidis and the decline and survival of the relict leopard frog. EcoHealth 14, 285–295 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Waddle, A. W. et al. Population-level resistance to chytridiomycosis is life-stage dependent in an imperiled anuran. EcoHealth 16, 701–711 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Boyle, D. G., Boyle, D. B., Olsen, V., Morgan, J. A. T. & Hyatt, A. D. Rapid quantitative detection of chytridiomycosis (Batrachochytrium dendrobatidis) in amphibian samples using real-time Taqman PCR assay. Dis. Aquat. Organ. 60, 141–148 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Brannelly, L. A., Wetzel, D. P., West, M. & Richards-Zawacki, C. L. Optimized Batrachochytrium dendrobatidis DNA extraction of swab samples results in imperfect detection particularly when infection intensities are low. Dis. Aquat. Organ. 139, 233–243 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • R Core Team. R: A Language and Environment for Statistical Computing. https://www.R-project.org/ (R Foundation for Statistical Computing, 2020).

  • Waddle, A. et al. Data for reinfection study, thermal preference study, behavioural fever study, and mesocosm study. Figshare https://doi.org/10.6084/m9.figshare.23672805 (2024).



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *