41567 2024 2540 Fig1 HTML

Active hydraulics and odd elasticity of muscle fibres

Posted by


  • Huxley, A. Reflections on Muscle Sherrington Lectures (Liverpool Univ. Press, 1980).

  • Needham, D. M. Machina Carnis: The Biochemistry of Muscular Contraction in its Historical Development (Cambridge Univ. Press, 1971).

  • Nyitrai, M. et al. What limits the velocity of fast-skeletal muscle contraction in mammals? J. Mol. Biol. 355, 432–442 (2006).

    Article 

    Google Scholar
     

  • Swank, D. M., Vishnudas, V. K. & Maughan, D. W. An exceptionally fast actomyosin reaction powers insect flight muscle. Proc. Natl Acad. Sci. USA 103, 17543–17547 (2006).

    Article 
    ADS 

    Google Scholar
     

  • Mead, A. F. et al. Fundamental constraints in synchronous muscle limit superfast motor control in vertebrates. eLife 6, e29425 (2017).

    Article 

    Google Scholar
     

  • Gordon, A. M., Homsher, E. & Regnier, M. Regulation of contraction in striated muscle. Physiol. Rev. 80, 853–924 (2000).

    Article 

    Google Scholar
     

  • Powers, J. D., Malingen, S. A., Regnier, M. & Daniel, T. L. The sliding filament theory since Andrew Huxley: multiscale and multidisciplinary muscle research. Annu. Rev. Biophys. 50, 373–400 (2021).

    Article 

    Google Scholar
     

  • Millman, B. M. The filament lattice of striated muscle. Physiol. Rev. 78, 359–391 (1998).

    Article 

    Google Scholar
     

  • Mogilner, A. & Manhart, A. Intracellular fluid mechanics: coupling cytoplasmic flow with active cytoskeletal gel. Annu. Rev. Fluid Mech. 50, 347–370 (2018).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Moeendarbary, E. et al. The cytoplasm of living cells behaves as a poroelastic material. Nat. Mater. 12, 253–261 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Skotheim, J. M. & Mahadevan, L. Physical limits and design principles for plant and fungal movements. Science 308, 1308–1310 (2005).

    Article 
    ADS 

    Google Scholar
     

  • Rome, L. C. & Lindstedt, S. L. The quest for speed: muscles built for high-frequency contractions. Physiology 13, 261–268 (1998).

    Article 

    Google Scholar
     

  • Syme, D. A. & Josephson, R. K. How to build fast muscles: synchronous and asynchronous designs. Integr. Comp. Biol. 42, 762–770 (2002).

    Article 

    Google Scholar
     

  • Josephson, R. Contraction dynamics and power output of skeletal muscle. Annu. Rev. Physiol. 55, 527–546 (1993).

    Article 

    Google Scholar
     

  • Szent-Györgyi, A. The contraction of myosin threads. Stud. Inst. Med. Chem. Univ. Szeged. 1, 17–26 (1942).


    Google Scholar
     

  • Bugyi, B. & Kellermayer, M. The discovery of actin: “to see what everyone else has seen, and to think what nobody has thought”. J. Muscle Res. Cell Motil. 41, 3–9 (2019).

    Article 

    Google Scholar
     

  • Kaminer, B. Water loss during contracture of muscle. J. Gen. Physiol. 46, 131–142 (1962).

    Article 

    Google Scholar
     

  • Trombitás, K., Baatsen, P., Schreuder, J. & Pollack, G. H. Contraction-induced movements of water in single fibres of frog skeletal muscle. J. Muscle Res. Cell Motil. 14, 573–584 (1993).

    Article 

    Google Scholar
     

  • Cecchi, G., Bagni, M., Griffiths, P., Ashley, C. & Maeda, Y. Detection of radial crossbridge force by lattice spacing changes in intact single muscle fibers. Science 250, 1409–1411 (1990).

    Article 
    ADS 

    Google Scholar
     

  • Pinto, J. & Win, R. Non-uniform strain distribution in papillary muscles. Am. J. Physiol. 233, H410–H416 (1977).


    Google Scholar
     

  • Neering, I., Quesenberry, L., Morris, V. & Taylor, S. Nonuniform volume changes during muscle contraction. Biophys. J. 59, 926–933 (1991).

    Article 
    ADS 

    Google Scholar
     

  • Ghosh, S. et al. Deformation microscopy for dynamic intracellular and intranuclear mapping of mechanics with high spatiotemporal resolution. Cell Rep. 27, 1607–1620 (2019).

    Article 

    Google Scholar
     

  • Washio, T., Shintani, S. A., Higuchi, H., Sugiura, S. & Hisada, T. Effect of myofibril passive elastic properties on the mechanical communication between motor proteins on adjacent sarcomeres. Sci. Rep. 9, 9355 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Kono, F., Kawai, S., Shimamoto, Y. & Ishiwata, S. Nanoscopic changes in the lattice structure of striated muscle sarcomeres involved in the mechanism of spontaneous oscillatory contraction (SPOC). Sci. Rep. 10, 16372 (2020).

    Article 

    Google Scholar
     

  • Chan, W. P. & Dickinson, M. H. In vivo length oscillations of indirect flight muscles in the fruit fly Drosophila virilis. J. Exp. Biol. 199, 2767–2774 (1996).

    Article 

    Google Scholar
     

  • Irving, T. & Maughan, D. In vivo X-ray diffraction of indirect flight muscle from Drosophila melanogaster. Biophys. J. 78, 2511–2515 (2000).

    Article 

    Google Scholar
     

  • Cass, J. A. et al. A mechanism for sarcomere breathing: volume change and advective flow within the myofilament lattice. Biophys. J. 120, 4079–4090 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Malingen, S. A. et al. In vivo X-ray diffraction and simultaneous EMG reveal the time course of myofilament lattice dilation and filament stretch. J. Exp. Biol. 223, jeb224188 (2020).

    Article 

    Google Scholar
     

  • Mijailovich, S. M. et al. Three-dimensional stochastic model of actin–myosin binding in the sarcomere lattice. J. Gen. Physiol. 148, 459–488 (2016).

    Article 

    Google Scholar
     

  • Sleboda, D. A. & Roberts, T. J. Internal fluid pressure influences muscle contractile force. Proc. Natl Acad. Sci. USA 117, 1772–1778 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Malingen, S. A., Hood, K., Lauga, E., Hosoi, A. & Daniel, T. L. Fluid flow in the sarcomere. Arch. Biochem. Biophys. 706, 108923 (2021).

    Article 

    Google Scholar
     

  • Wang, H. F. Theory of Linear Poroelasticity with Applications to Geomechanics and Hydrogeology (Princeton Univ. Press, 2017).

  • Schoenberg, M. Geometrical factors influencing muscle force development. I. The effect of filament spacing upon axial forces. Biophys. J. 30, 51–67 (1980).

    Article 
    ADS 

    Google Scholar
     

  • Schoenberg, M. Geometrical factors influencing muscle force development. II. Radial forces. Biophys. J. 30, 69–77 (1980).

    Article 
    ADS 

    Google Scholar
     

  • Guo, B. & Guilford, W. H. Mechanics of actomyosin bonds in different nucleotide states are tuned to muscle contraction. Proc. Natl Acad. Sci. USA 103, 9844–9849 (2006).

    Article 
    ADS 

    Google Scholar
     

  • Pringle, J. W. S. The Croonian Lecture, 1977. Stretch activation of muscle: function and mechanism. Proc. R. Soc. Lond. B 201, 107–130 (1978).

    Article 
    ADS 

    Google Scholar
     

  • Ait-Mou, Y. et al. Titin strain contributes to the frank–starling law of the heart by structural rearrangements of both thin-and thick-filament proteins. Proc. Natl Acad. Sci. USA 113, 2306–2311 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Guérin, T., Prost, J. & Joanny, J.-F. Dynamical behavior of molecular motor assemblies in the rigid and crossbridge models. Eur. Phys. J. E 34, 60 (2011).

    Article 

    Google Scholar
     

  • Josephson, R. K., Malamud, J. G. & Stokes, D. R. Asynchronous muscle: a primer. J. Exp. Biol. 203, 2713–2722 (2000).

    Article 

    Google Scholar
     

  • Biot, M. A. Mechanics of Incremental Deformations (John Wiley & Sons, 1965).

  • Fruchart, M., Scheibner, C. & Vitelli, V. Odd viscosity and odd elasticity. Annu. Rev. Condens. Matter Phys. 14, 471–510 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Scheibner, C. et al. Odd elasticity. Nat. Phys. 16, 475–480 (2020).

    Article 

    Google Scholar
     

  • Zahalak, G. I. Non-axial muscle stress and stiffness. J. Theor. Biol. 182, 59–84 (1996).

    Article 
    ADS 

    Google Scholar
     

  • Josephson, R. K. Mechanical power output from striated muscle during cyclic contraction. J. Exp. Biol. 114, 493–512 (1985).

    Article 

    Google Scholar
     

  • Tanner, B. C. et al. Thick-to-thin filament surface distance modulates cross-bridge kinetics in drosophila flight muscle. Biophys. J. 103, 1275–1284 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Palmer, B. M. et al. Two-state model of acto-myosin attachment-detachment predicts c-process of sinusoidal analysis. Biophys. J. 93, 760–769 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Kawai, M. & Brandt, P. W. Sinusoidal analysis: a high resolution method for correlating biochemical reactions with physiological processes in activated skeletal muscles of rabbit, frog and crayfish. J. Muscle Res. Cell Motil. 1, 279–303 (1980).

    Article 

    Google Scholar
     

  • Roca-Cusachs, P., Conte, V. & Trepat, X. Quantifying forces in cell biology. Nat. Cell Biol. 19, 742–751 (2017).

    Article 

    Google Scholar
     

  • Marden, J. H. & Allen, L. R. Molecules, muscles, and machines: universal performance characteristics of motors. Proc. Natl Acad. Sci. USA 99, 4161–4166 (2002).

    Article 
    ADS 

    Google Scholar
     

  • Ilton, M. et al. The principles of cascading power limits in small, fast biological and engineered systems. Science 360, eaao1082 (2018).

    Article 

    Google Scholar
     

  • Labonte, D. A theory of physiological similarity in muscle-driven motion. Proc. Natl Acad. Sci. USA 120, e2221217120 (2023).

    Article 
    MathSciNet 

    Google Scholar
     

  • Mirvakili, S. M. & Hunter, I. W. Artificial muscles: mechanisms, applications, and challenges. Adv. Mater. 30, 1704407 (2018).

    Article 

    Google Scholar
     

  • de Gennes, P.-G. A semi-fast artificial muscle. C. R. Acad. Sci. IIB 5, 343–348 (1997).


    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *