41563 2024 1937 Fig1 HTML

Synthetic extremophiles via species-specific formulations improve microbial therapeutics

Posted by


  • Vitorino, L. C. & Bessa, L. A. Technological microbiology: development and applications. Front. Microbiol. 8, 827 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ozdemir, T., Fedorec, A. J. H., Danino, T. & Barnes, C. P. Synthetic biology and engineered live biotherapeutics: toward increasing system complexity. Cell Syst. 7, 5–16 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Arif, I., Batool, M. & Schenk, P. M. Plant microbiome engineering: expected benefits for improved crop growth and resilience. Trends Biotechnol. 38, 1385–1396 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Menezes, A. A., Cumbers, J., Hogan, J. A. & Arkin, A. P. Towards synthetic biological approaches to resource utilization on space missions. J. R. Soc. Interface 12, 20140715 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jimenez, M., Langer, R. & Traverso, G. Microbial therapeutics: new opportunities for drug delivery. J. Exp. Med. 216, 1005–1009 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hyronimus, B., Le Marrec, C., Hadj Sassi, A. & Deschamps, A. Acid and bile tolerance of spore-forming lactic acid bacteria. Int. J. Food Microbiol. 61, 193–197 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Prakash, O., Nimonkar, Y. & Shouche, Y. S. Practice and prospects of microbial preservation. FEMS Microbiol. Lett. 339, 1–9 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Morgan, C. A., Herman, N., White, P. A. & Vesey, G. Preservation of micro-organisms by drying; a review. J. Microbiol. Methods 66, 183–193 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kurtz, C. et al. Translational development of microbiome‐based therapeutics: kinetics of E. coli Nissle and engineered strains in humans and nonhuman primates. Clin. Transl. Sci. 11, 200–207 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gurbatri, C. R. et al. Engineered probiotics for local tumor delivery of checkpoint blockade nanobodies. Sci. Transl. Med. 12, eaax0876 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Adejare, A. (ed.) Remington: The Science and Practice of Pharmacy 23rd edn (Academic Press, 2020).

  • Rowlett, V. W. et al. Impact of membrane phospholipid alterations in Escherichia coli on cellular function and bacterial stress adaptation. J. Bacteriol. 199, e00849–16 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bogdanov, M., Dowhan, W. & Vitrac, H. Lipids and topological rules governing membrane protein assembly. Biochim. Biophys. Acta 1843, 1475–1488 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sonnenborn, U. & Schulze, J. The non-pathogenic Escherichia coli strain Nissle 1917 – features of a versatile probiotic. Microb. Ecol. Health Dis. 21, 122–158 (2009).

    CAS 

    Google Scholar
     

  • Connor, T. R. et al. Species-wide whole genome sequencing reveals historical global spread and recent local persistence in Shigella flexneri. eLife 4, e07335 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lapierre, L. et al. Phenotypic and genotypic characterization of virulence factors and susceptibility to antibiotics in Salmonella Infantis strains isolated from chicken meat: first findings in Chile. Animals 10, 1049 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shad, A. A. & Shad, W. A. Shigella sonnei: virulence and antibiotic resistance. Arch. Microbiol. 203, 45–58 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Long, S. R. Rhizobium-legume nodulation: life together in the underground. Cell 56, 203–214 (1989).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ivanova, E. P. & Skalozub, O. M. The effectiveness of the use of Sinorhizobium meliloti in the cultivation of variable alfalfa (Medicago varia Mart.). IOP Conf. Ser. Earth Environ. Sci. 962, 012017 (2022).

    Article 

    Google Scholar
     

  • Deaker, R., Roughley, R. & Kennedy, I. Legume seed inoculation technology—a review. Soil Biol. Biochem. 36, 1275–1288 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Pedrini, S., Merritt, D. J., Stevens, J. & Dixon, K. Seed coating: science or marketing spin? Trends Plant Sci. 22, 106–116 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Doses in Our Daily Lives (United States Nuclear Regulatory Commission, accessed 10 November 2022); https://www.nrc.gov/about-nrc/radiation/around-us/doses-daily-lives.html

  • Zhang, S. et al. First measurements of the radiation dose on the lunar surface. Sci. Adv. 6, eaaz1334 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zeitlin, C. et al. Overview of the Martian radiation environment experiment. Adv. Space Res. 33, 2204–2210 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hassler, D. M. et al. Mars’ surface radiation environment measured with the Mars Science Laboratory’s Curiosity rover. Science 343, 1244797 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Dachev, T. P. et al. Overview of the ISS radiation environment observed during the ESA EXPOSE-R2 mission in 2014–2016. Space Weather 15, 1475–1489 (2017).

    Article 

    Google Scholar
     

  • Lambert, P. A. in Russell, Hugo & Ayliffe’s Principles and Practice of Disinfection, Preservation and Sterilization 5th edn (eds Fraise, A. P. et al.) 294–305 (John Wiley & Sons, 2013).

  • Matin, A., Auger, E. A., Blum, P. H. & Schultz, J. E. Genetic basis of starvation survival in nondifferentiating bacteria. Annu. Rev. Microbiol. 43, 293–316 (1989).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wasuwanich, P., Fan, G., Burke, B. & Furst, A. L. Metal-phenolic networks as tuneable spore coat mimetics. J. Mater. Chem. B 10, 7600–7606 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Milo, R., Jorgensen, P., Moran, U., Weber, G. & Springer, M. BioNumbers—the database of key numbers in molecular and cell biology. Nucleic Acids Res. 38, D750–D753 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Abràmoff, M. D., Magalhães, P. J. & Ram, S. J. Image processing with ImageJ. Biophotonics Int. 11, 36–42 (2004).


    Google Scholar
     

  • <1216> Tablet Friability (United States Pharmacopeia, 2023); https://doi.org/10.31003/USPNF_M99935_02_01

  • <2091> Weight Variation of Dietary Supplements (United States Pharmacopeia, 2019); https://doi.org/10.31003/USPNF_M99985_02_01

  • <701> Disintegration (United States Pharmacopeia, 2019); https://doi.org/10.31003/USPNF_M99460_03_01

  • <1217> Tablet Breaking Force (United States Pharmacopeia, 2019); https://doi.org/10.31003/USPNF_M99937_02_01

  • Sugawara, M. & Sadowsky, M. J. Enhanced nodulation and nodule development by nolR mutants of Sinorhizobium medicae on specific Medicago host genotypes. Mol. Plant Microbe Interact. 27, 328–335 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Barker, D. et al. Medicago truncatula Handbook (The Samuel Roberts Noble Fondation, 2006).

  • Legume-Microbe Interactions Laboratory. Protocol for Nodulation Assay in Pouches (Univ. Missouri, accessed 15 October 2020); https://staceylab.missouri.edu/protocol-nodulation-assay-pouches/



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *