41550 2024 2302 Fig1 HTML

Radar evidence of an accessible cave conduit on the Moon below the Mare Tranquillitatis pit

Posted by


  • Greeley, R. Lava tubes and channels in the lunar Marius Hills. Moon 3, 289–314 (1971).

    Article 
    ADS 

    Google Scholar
     

  • Halliday & William, R. Terrestrial pseudokarst and the lunar topography. Bull. Natl Speleol. Soc. 28, 167–170 (1966).


    Google Scholar
     

  • Horz, F. in Lunar Bases and Space Activities of the 21st Century (ed. Mendell, W. W.) 405–412 (Lunar and Planetary Institute, 1985).

  • Haruyama, J. et al. Possible lunar lava tube skylight observed by SELENE cameras. Geophys. Res. Lett. https://doi.org/10.1029/2009GL040635 (2009).

  • Robinson, M. S. et al. Confirmation of sublunarean voids and thin layering in mare deposits. Planet. Space Sci. 69, 18–27 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Wagner, R. V. & Robinson, M. S. Distribution, formation mechanisms, and significance of lunar pits. Icarus 237, 52–60 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Kaku, T. et al. Detection of intact lava tubes at Marius Hills on the Moon by SELENE (Kaguya) Lunar Radar Sounder. Geophys. Res. Lett. 44, 10–155 (2017).

    Article 

    Google Scholar
     

  • Donini, E., Carrer, L., Gerekos, C., Bruzzone, L. & Bovolo, F. An unsupervised fuzzy system for the automatic detection of candidate lava tubes in radar sounder data. IEEE Trans. Geosci. Remote Sens. TGRS.2021.3062753 (2021).

  • Chappaz, L. et al. Evidence of large empty lava tubes on the Moon using GRAIL gravity. Geophys. Res. Lett. 44, 105–112 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Horvath, T., Hayne, P. O. & Paige, D. A. Thermal and illumination environments of lunar pits and caves: models and observations from the Diviner Lunar Radiometer experiment. Geophys. Res. Lett. 49, e2022GL099710 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Kobayashi, T., Kim, J. H., Lee, S. R. & Song, K. Y. Nadir detection of lunar lava tube by Kaguya lunar radar sounder. IEEE Trans. Geosci. Remote Sens. 59, 7395–7418 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Nesnas, I. A. et al. Moon diver: exploring a pit’s exposed strata to understand lunar volcanism. Acta Astronaut. 211, 163–176 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Haruyama, J. et al. in Moon: Prospective Energy and Material Resources (ed. Badescu, V.) 139–163 (Springer, 2012).

  • Carrer, L., Castelletti, D., Pozzobon, R., Sauro, F. & Bruzzone, L. A novel method for hidden natural caves characterization and accessibility assessment from spaceborne VHR SAR images. IEEE Trans. Geosci. Remote Sens. 61, 1–11 (2022).


    Google Scholar
     

  • Nozette, S. et al. The Lunar Reconnaissance Orbiter miniature radio frequency (Mini-RF) technology demonstration. Space Sci. Rev. 150, 285–302 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Raney, R. K. et al. The lunar mini-RF radars: hybrid polarimetric architecture and initial results. Proc. IEEE 99, 808–823 (2010).

    Article 

    Google Scholar
     

  • Wagner, R. V. & Robinson, M. S. Lunar pit morphology: implications for exploration. J. Geophys. Res.: Planets 127, e2022JE007328 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Staid, M. I., Pieters, C. M. & Head, J. W. III Mare Tranquillitatis: basalt emplacement history and relation to lunar samples. J. Geophys. Res.: Planets 101, 23213–23228 (1996).

    Article 
    ADS 

    Google Scholar
     

  • Wagner, R. V. & Robinson, M. S. Occurrence and origin of lunar pits: observations from a new catalog. In Proc. 52nd Lunar and Planetary Science Conference (Lunar and Planetary Institute, 2021).

  • Wynne, J. J. et al. Planetary caves: a Solar System view of processes and products. J. Geophys. Res.: Planets 127, e2022JE007303 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Cushing, G. E. Candidate cave entrances on Mars. J. Cave Karst Stud. 74, 33–47 (2012).

    Article 

    Google Scholar
     

  • Sharma, R. & Srivastava, N. Detection and classification of potential caves on the flank of Elysium Mons, Mars. Res. Astron. Astrophys. 22, 065008 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Henriksen, M. R. et al. Extracting accurate and precise topography from LROC narrow angle camera stereo observations. Icarus 283, 122–137 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Auer, S., Hinz, S. & Bamler, R. Ray-tracing simulation techniques for understanding high-resolution SAR images. IEEE Trans. Geosci. Remote Sens. 48, 1445–1456 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Head, J. W. III. Lunar volcanism in space and time. Rev. Geophys. 14, 265–300 (1976).

    Article 
    ADS 

    Google Scholar
     

  • Titus, T. N. et al. A roadmap for planetary caves science and exploration. Nat. Astron. 5, 524–525 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Blank, J. G. et al. Planetary Caves as Astrobiology Targets. White Paper (National Academy of Sciences, 2018).

  • Carrer, L. et al. Dataset of ‘Radar evidence of an accessible cave conduit on the Moon below the Mare Tranquillitatis pit’. Zenodo https://doi.org/10.5281/zenodo.11005458 (2024).



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *